1,953 research outputs found
A Joint Speaker-Listener-Reinforcer Model for Referring Expressions
Referring expressions are natural language constructions used to identify
particular objects within a scene. In this paper, we propose a unified
framework for the tasks of referring expression comprehension and generation.
Our model is composed of three modules: speaker, listener, and reinforcer. The
speaker generates referring expressions, the listener comprehends referring
expressions, and the reinforcer introduces a reward function to guide sampling
of more discriminative expressions. The listener-speaker modules are trained
jointly in an end-to-end learning framework, allowing the modules to be aware
of one another during learning while also benefiting from the discriminative
reinforcer's feedback. We demonstrate that this unified framework and training
achieves state-of-the-art results for both comprehension and generation on
three referring expression datasets. Project and demo page:
https://vision.cs.unc.edu/referComment: Some typo fixed; comprehension results on refcocog updated; more
human evaluation results adde
Hierarchically-Attentive RNN for Album Summarization and Storytelling
We address the problem of end-to-end visual storytelling. Given a photo
album, our model first selects the most representative (summary) photos, and
then composes a natural language story for the album. For this task, we make
use of the Visual Storytelling dataset and a model composed of three
hierarchically-attentive Recurrent Neural Nets (RNNs) to: encode the album
photos, select representative (summary) photos, and compose the story.
Automatic and human evaluations show our model achieves better performance on
selection, generation, and retrieval than baselines.Comment: To appear at EMNLP-2017 (7 pages
Fermions in 3D Optical Lattices: Cooling Protocol to Obtain Antiferromagnetism
A major challenge in realizing antiferromagnetic (AF) and superfluid phases
in optical lattices is the ability to cool fermions. We determine the equation
of state for the 3D repulsive Fermi-Hubbard model as a function of the chemical
potential, temperature and repulsion using unbiased determinantal quantum Monte
Carlo methods, and we then use the local density approximation to model a
harmonic trap. We show that increasing repulsion leads to cooling, but only in
a trap, due to the redistribution of entropy from the center to the metallic
wings. Thus, even when the average entropy per particle is larger than that
required for antiferromagnetism in the homogeneous system, the trap enables the
formation of an AF Mott phase.Comment: 4 pages; 5 figures; also see supplementary material in 2 pages with 1
figur
The impact of high grade glial neoplasms on human cortical electrophysiology
ObjectiveThe brain's functional architecture of interconnected network-related oscillatory patterns in discrete cortical regions has been well established with functional magnetic resonance imaging (fMRI) studies or direct cortical electrophysiology from electrodes placed on the surface of the brain, or electrocorticography (ECoG). These resting state networks exhibit a robust functional architecture that persists through all stages of sleep and under anesthesia. While the stability of these networks provides a fundamental understanding of the organization of the brain, understanding how these regions can be perturbed is also critical in defining the brain's ability to adapt while learning and recovering from injury.MethodsPatients undergoing an awake craniotomy for resection of a tumor were studied as a unique model of an evolving injury to help define how the cortical physiology and the associated networks were altered by the presence of an invasive brain tumor.ResultsThis study demonstrates that there is a distinct pattern of alteration of cortical physiology in the setting of a malignant glioma. These changes lead to a physiologic sequestration and progressive synaptic homogeneity suggesting that a de-learning phenomenon occurs within the tumoral tissue compared to its surroundings.SignificanceThese findings provide insight into how the brain accommodates a region of "defunctionalized" cortex. Additionally, these findings may have important implications for emerging techniques in brain mapping using endogenous cortical physiology
Recommended from our members
T Oligo-Primed Polymerase Chain Reaction (TOP-PCR): A Robust Method for the Amplification of Minute DNA Fragments in Body Fluids.
Body fluid DNA sequencing is a powerful noninvasive approach for the diagnosis of genetic defects, infectious agents and diseases. The success relies on the quantity and quality of the DNA samples. However, numerous clinical samples are either at low quantity or of poor quality due to various reasons. To overcome these problems, we have developed T oligo-primed polymerase chain reaction (TOP-PCR) for full-length nonselective amplification of minute quantity of DNA fragments. TOP-PCR adopts homogeneous "half adaptor" (HA), generated by annealing P oligo (carrying a phosphate group at the 5' end) and T oligo (carrying a T-tail at the 3' end), for efficient ligation to target DNA and subsequent PCR amplification primed by the T oligo alone. Using DNA samples from body fluids, we demonstrate that TOP-PCR recovers minute DNA fragments and maintains the DNA size profile, while enhancing the major molecular populations. Our results also showed that TOP-PCR is a superior method for detecting apoptosis and outperforms the method adopted by Illumina for DNA amplification
Viscosity of strongly interacting quantum fluids: spectral functions and sum rules
The viscosity of strongly interacting systems is a topic of great interest in
diverse fields.
We focus here on the bulk and shear viscosities of \emph{non-relativistic}
quantum fluids, with particular emphasis on strongly interacting ultracold
Fermi gases. We use Kubo formulas for the bulk and shear viscosity spectral
functions, and respectively, to derive exact,
non-perturbative results. Our results include: a microscopic connection between
the shear viscosity and the normal fluid density ; sum rules for
and and their evolution through the BCS-BEC
crossover; universal high-frequency tails for and the dynamic
structure factor . We use our sum rules to show that, at
unitarity, is identically zero and thus relate
to density-density correlations. We predict that frequency-dependent shear
viscosity of the unitary Fermi gas can be experimentally
measured using Bragg spectroscopy.Comment: Published versio
- …
