65 research outputs found
Identifying component modules
A computer-based system for modelling component dependencies and identifying component modules is presented. A variation of the Dependency Structure Matrix (DSM) representation was used to model component dependencies. The system utilises a two-stage approach towards facilitating the identification of a hierarchical modular structure. The first stage calculates a value for a clustering criterion that may be used to group component dependencies together. A Genetic Algorithm is described to optimise the order of the components within the DSM with the focus of minimising the value of the clustering criterion to identify the most significant component groupings (modules) within the product structure. The second stage utilises a 'Module Strength Indicator' (MSI) function to determine a value representative of the degree of modularity of the component groupings. The application of this function to the DSM produces a 'Module Structure Matrix' (MSM) depicting the relative modularity of available component groupings within it. The approach enabled the identification of hierarchical modularity in the product structure without the requirement for any additional domain specific knowledge within the system. The system supports design by providing mechanisms to explicitly represent and utilise component and dependency knowledge to facilitate the nontrivial task of determining near-optimal component modules and representing product modularity
On Identifying the Appropriate Boundary Conditions'at a Moving Contact Line: An Experimental Investigation
and is slightly tapered as it merges with the adsorbed film. However, in employing this method, attention must be paid to the discontinuity in the interfacial curvature, which can be made negligible by properly selecting the matching point between an interline and thin film solutions
Effect of Longâ Term Oral Bisphosphonates on Implant Wound Healing: Literature Review and a Case Report
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141603/1/jper0584.pd
Test and evaluation project no. 28: anti-icing technology, field evaluation report.
Federal Highway Administration, Office of Engineering Research and Development, McLean, Va.Mode of access: Internet.Author corporate affiliation: Cold Regions Research and Engineering Laboratory, Hanover, N.H.Subject code: BMSubject code: IMSubject code: LKMLSubject code: MAHSubject code: SCESubject code: WW*I
- …