16 research outputs found

    Has phytodetritus processing by an abyssal soft-sediment community recovered 26 years after an experimental disturbance?

    Get PDF
    The potential harvest of polymetallic nodules will heavily impact the abyssal, soft sediment ecosystem by removing sediment, hard substrate, and associated fauna inside mined areas. It is therefore important to know whether the ecosystem can recover from this disturbance and if so at which rate. The first objective of this study was to measure recovery of phytodetritus processing by the benthic food web from a sediment disturbance experiment in 1989. The second objective was to determine the role of holothurians in the uptake of fresh phytodetritus by the benthic food web. To meet both objectives, large benthic incubation chambers (CUBEs; 50 × 50 × 50 cm) were deployed inside plow tracks (with and without holothurian presence) and at a reference site (holothurian presence, only) at 4100 m water depth. Shortly after deployment, 13C- and 15N-labeled phytodetritus was injected in the incubation chambers and during the subsequent 3-day incubation period, water samples were taken five times to measure the production of 13C-dissolved inorganic carbon over time. At the end of the incubation, holothurians and sediment samples were taken to determine biomass, densities and incorporation of 13C and 15N into bacteria, nematodes, macrofauna, and holothurians. For the first objective, the results showed that biomass of bacteria, nematodes and macrofauna did not differ between reference sites and plow track sites when holothurians were present. Additionally, meiofauna and macrofauna taxonomic composition was not significantly different between the sites. In contrast, total 13C uptake by bacteria, nematodes and holothurians was significantly lower at plow track sites compared to reference sites, though the number of replicates was low. This result suggests that important ecosystem functions such as organic matter processing have not fully recovered from the disturbance that occurred 26 years prior to our study. For the second objective, the analysis indicated that holothurians incorporated 2.16 × 10−3 mmol labile phytodetritus C m−2 d−1 into their biomass, which is one order of magnitude less as compared to bacteria, but 1.3 times higher than macrofauna and one order of magnitude higher than nematodes. Additionally, holothurians incorporated more phytodetritus carbon per unit biomass than macrofauna and meiofauna, suggesting a size-dependence in phytodetritus carbon uptake

    A prolonged fast improves overnight substrate oxidation without modulating hepatic glycogen in adults with and without nonalcoholic fatty liver: A randomized crossover trial

    No full text
    ObjectiveIncreasing overnight fasting time seems a promising strategy to improve metabolic health in individuals with nonalcoholic fatty liver (NAFL). Mechanisms underlying the beneficial effects of fasting may be related to larger fluctuations in hepatic glycogen and higher fat oxidation. This study investigated whether prolonging an overnight fast depletes hepatic glycogen stores and improves substrate metabolism in individuals with NAFL and healthy lean individuals. MethodsEleven individuals with NAFL and ten control individuals participated in this randomized crossover trial. After a 9.5-hour or 16-hour fast, hepatic glycogen was measured by using carbon-13 magnetic resonance spectroscopy, and a meal test was performed. Nocturnal substrate oxidation was measured with indirect calorimetry. ResultsExtending fasting time led to lower nocturnal carbohydrate oxidation and higher fat oxidation in both groups (intervention x time, p < 0.005 for carbohydrate and fat oxidation). In both arms, the respiratory exchange ratio measured during the night remained higher in the group with NAFL compared with the control group (population p < 0.001). No changes were observed in hepatic glycogen depletion with a prolonged overnight fast in the group with NAFL or the control group. ConclusionsThese results suggest that acutely prolonging the overnight fast can improve overnight substrate oxidation and that these alterations are not mediated by changes in hepatic glycogen depletion

    Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function

    No full text
    The relationship between the age-associated decline in mitochondrial function and its effect on skeletal muscle physiology and function remain unclear. In the current study, we examined to what extent physical activity contributes to the decline in mitochondrial function and muscle health during aging and compared mitochondrial function in young and older adults, with similar habitual physical activity levels. We also studied exercise-trained older adults and physically impaired older adults. Aging was associated with a decline in mitochondrial capacity, exercise capacity and efficiency, gait stability, muscle function, and insulin sensitivity, even when maintaining an adequate daily physical activity level. Our data also suggest that a further increase in physical activity level, achieved through regular exercise training, can largely negate the effects of aging. Finally, mitochondrial capacity correlated with exercise efficiency and insulin sensitivity. Together, our data support a link between mitochondrial function and age-associated deterioration of skeletal muscle. Aging is associated with a progressive loss of muscle function. Here the authors characterize mitochondrial capacity and muscle function in young and older adults with similar habitual physical activity and also compared to older adults with exercise training or with physical impairment

    Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function

    Get PDF
    Aging is associated with a progressive loss of muscle function. Here the authors characterize mitochondrial capacity and muscle function in young and older adults with similar habitual physical activity and also compared to older adults with exercise training or with physical impairment

    Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans

    No full text
    BACKGROUND: Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation. OBJECTIVES: We aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, mitochondrial function, and other metabolic health parameters in overweight and obese volunteers. METHODS: A randomized, double-blinded, placebo-controlled, crossover intervention study was conducted in 13 healthy overweight or obese men and women. Participants received 6 wk NR (1000 mg/d) and placebo supplementation, followed by broad metabolic phenotyping, including hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy, muscle biopsies, and assessment of ex vivo mitochondrial function and in vivo energy metabolism. RESULTS: Markers of increased NAD+ synthesis-nicotinic acid adenine dinucleotide and methyl nicotinamide-were elevated in skeletal muscle after NR compared with placebo. NR increased body fat-free mass (62.65% ± 2.49% compared with 61.32% ± 2.58% in NR and placebo, respectively; change: 1.34% ± 0.50%, P = 0.02) and increased sleeping metabolic rate. Interestingly, acetylcarnitine concentrations in skeletal muscle were increased upon NR (4558 ± 749 compared with 3025 ± 316 pmol/mg dry weight in NR and placebo, respectively; change: 1533 ± 683 pmol/mg dry weight, P = 0.04) and the capacity to form acetylcarnitine upon exercise was higher in NR than in placebo (2.99 ± 0.30 compared with 2.40 ± 0.33 mmol/kg wet weight; change: 0.53 ± 0.21 mmol/kg wet weight, P = 0.01). However, no effects of NR were found on insulin sensitivity, mitochondrial function, hepatic and intramyocellular lipid accumulation, cardiac energy status, cardiac ejection fraction, ambulatory blood pressure, plasma markers of inflammation, or energy metabolism. CONCLUSIONS: NR supplementation of 1000 mg/d for 6 wk in healthy overweight or obese men and women increased skeletal muscle NAD+ metabolites, affected skeletal muscle acetylcarnitine metabolism, and induced minor changes in body composition and sleeping metabolic rate. However, no other metabolic health effects were observed.This trial was registered at clinicaltrials.gov as NCT02835664
    corecore