48 research outputs found

    Short-Term Environmental Enrichment Rescues Adult Neurogenesis and Memory Deficits in APPSw,Ind Transgenic Mice

    Get PDF
    Epidemiological studies indicate that intellectual activity prevents or delays the onset of Alzheimer's disease (AD). Similarly, cognitive stimulation using environmental enrichment (EE), which increases adult neurogenesis and functional integration of newborn neurons into neural circuits of the hippocampus, protects against memory decline in transgenic mouse models of AD, but the mechanisms involved are poorly understood. To study the therapeutic benefits of cognitive stimulation in AD we examined the effects of EE in hippocampal neurogenesis and memory in a transgenic mouse model of AD expressing the human mutant β-amyloid (Aβ) precursor protein (APPSw,Ind). By using molecular markers of new generated neurons (bromodeoxiuridine, NeuN and doublecortin), we found reduced neurogenesis and decreased dendritic length and projections of doublecortin-expressing cells of the dentate gyrus in young APPSw,Ind transgenic mice. Moreover, we detected a lower number of mature neurons (NeuN positive) in the granular cell layer and a reduced volume of the dentate gyrus that could be due to a sustained decrease in the incorporation of new generated neurons. We found that short-term EE for 7 weeks efficiently ameliorates early hippocampal-dependent spatial learning and memory deficits in APPSw,Ind transgenic mice. The cognitive benefits of enrichment in APPSw,Ind transgenic mice were associated with increased number, dendritic length and projections to the CA3 region of the most mature adult newborn neurons. By contrast, Aβ levels and the total number of neurons in the dentate gyrus were unchanged by EE in APPSw,Ind mice. These results suggest that promoting the survival and maturation of adult generated newborn neurons in the hippocampus may contribute to cognitive benefits in AD mouse models

    SIGffRid: A tool to search for sigma factor binding sites in bacterial genomes using comparative approach and biologically driven statistics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many programs have been developed to identify transcription factor binding sites. However, most of them are not able to infer two-word motifs with variable spacer lengths. This case is encountered for RNA polymerase Sigma (<it>σ</it>) Factor Binding Sites (SFBSs) usually composed of two boxes, called -35 and -10 in reference to the transcription initiation point. Our goal is to design an algorithm detecting SFBS by using combinational and statistical constraints deduced from biological observations.</p> <p>Results</p> <p>We describe a new approach to identify SFBSs by comparing two related bacterial genomes. The method, named SIGffRid (SIGma Factor binding sites Finder using R'MES to select Input Data), performs a simultaneous analysis of pairs of promoter regions of orthologous genes. SIGffRid uses a prior identification of over-represented patterns in whole genomes as selection criteria for potential -35 and -10 boxes. These patterns are then grouped using pairs of short seeds (of which one is possibly gapped), allowing a variable-length spacer between them. Next, the motifs are extended guided by statistical considerations, a feature that ensures a selection of motifs with statistically relevant properties. We applied our method to the pair of related bacterial genomes of <it>Streptomyces coelicolor </it>and <it>Streptomyces avermitilis</it>. Cross-check with the well-defined SFBSs of the SigR regulon in <it>S. coelicolor </it>is detailed, validating the algorithm. SFBSs for HrdB and BldN were also found; and the results suggested some new targets for these <it>σ </it>factors. In addition, consensus motifs for BldD and new SFBSs binding sites were defined, overlapping previously proposed consensuses. Relevant tests were carried out also on bacteria with moderate GC content (i.e. <it>Escherichia coli</it>/<it>Salmonella typhimurium </it>and <it>Bacillus subtilis</it>/<it>Bacillus licheniformis </it>pairs). Motifs of house-keeping <it>σ </it>factors were found as well as other SFBSs such as that of SigW in <it>Bacillus </it>strains.</p> <p>Conclusion</p> <p>We demonstrate that our approach combining statistical and biological criteria was successful to predict SFBSs. The method versatility autorizes the recognition of other kinds of two-box regulatory sites.</p

    Experimental ‘Jet Lag’ Inhibits Adult Neurogenesis and Produces Long-Term Cognitive Deficits in Female Hamsters

    Get PDF
    Background: Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including marked deficits in human cognitive function. Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this possibility has not been experimentally examined. Methodology/Principal Findings: In the present study, we investigated whether experimental ‘jet lag ’ (i.e., phase advances of the light:dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly, deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption, but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function. Conclusions/Significance: Together, these findings support the view that circadian disruptions suppress hippocampal neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learnin

    SIGffRid: A tool to search for sigma factor binding sites in bacterial genomes using comparative approach and biologically driven statistics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many programs have been developed to identify transcription factor binding sites. However, most of them are not able to infer two-word motifs with variable spacer lengths. This case is encountered for RNA polymerase Sigma (<it>σ</it>) Factor Binding Sites (SFBSs) usually composed of two boxes, called -35 and -10 in reference to the transcription initiation point. Our goal is to design an algorithm detecting SFBS by using combinational and statistical constraints deduced from biological observations.</p> <p>Results</p> <p>We describe a new approach to identify SFBSs by comparing two related bacterial genomes. The method, named SIGffRid (SIGma Factor binding sites Finder using R'MES to select Input Data), performs a simultaneous analysis of pairs of promoter regions of orthologous genes. SIGffRid uses a prior identification of over-represented patterns in whole genomes as selection criteria for potential -35 and -10 boxes. These patterns are then grouped using pairs of short seeds (of which one is possibly gapped), allowing a variable-length spacer between them. Next, the motifs are extended guided by statistical considerations, a feature that ensures a selection of motifs with statistically relevant properties. We applied our method to the pair of related bacterial genomes of <it>Streptomyces coelicolor </it>and <it>Streptomyces avermitilis</it>. Cross-check with the well-defined SFBSs of the SigR regulon in <it>S. coelicolor </it>is detailed, validating the algorithm. SFBSs for HrdB and BldN were also found; and the results suggested some new targets for these <it>σ </it>factors. In addition, consensus motifs for BldD and new SFBSs binding sites were defined, overlapping previously proposed consensuses. Relevant tests were carried out also on bacteria with moderate GC content (i.e. <it>Escherichia coli</it>/<it>Salmonella typhimurium </it>and <it>Bacillus subtilis</it>/<it>Bacillus licheniformis </it>pairs). Motifs of house-keeping <it>σ </it>factors were found as well as other SFBSs such as that of SigW in <it>Bacillus </it>strains.</p> <p>Conclusion</p> <p>We demonstrate that our approach combining statistical and biological criteria was successful to predict SFBSs. The method versatility autorizes the recognition of other kinds of two-box regulatory sites.</p
    corecore