36 research outputs found

    Distinct Transcriptome Expression of the Temporal Cortex of the Primate Microcebus murinus during Brain Aging versus Alzheimer's Disease-Like Pathology

    Get PDF
    Aging is the primary risk factor of neurodegenerative disorders such as Alzheimer's disease (AD). However, the molecular events occurring during brain aging are extremely complex and still largely unknown. For a better understanding of these age-associated modifications, animal models as close as possible to humans are needed. We thus analyzed the transcriptome of the temporal cortex of the primate Microcebus murinus using human oligonucleotide microarrays (Affymetrix). Gene expression profiles were assessed in the temporal cortex of 6 young adults, 10 healthy old animals and 2 old, “AD-like” animals that presented ß-amyloid plaques and cortical atrophy, which are pathognomonic signs of AD in humans. Gene expression data of the 14,911 genes that were detected in at least 3 samples were analyzed. By SAM (significance analysis of microarrays), we identified 47 genes that discriminated young from healthy old and “AD-like” animals. These findings were confirmed by principal component analysis (PCA). ANOVA of the expression data from the three groups identified 695 genes (including the 47 genes previously identified by SAM and PCA) with significant changes of expression in old and “AD-like” in comparison to young animals. About one third of these genes showed similar changes of expression in healthy aging and in “AD-like” animals, whereas more than two thirds showed opposite changes in these two groups in comparison to young animals. Hierarchical clustering analysis of the 695 markers indicated that each group had distinct expression profiles which characterized each group, especially the “AD-like” group. Functional categorization showed that most of the genes that were up-regulated in healthy old animals and down-regulated in “AD-like” animals belonged to metabolic pathways, particularly protein synthesis. These data suggest the existence of compensatory mechanisms during physiological brain aging that disappear in “AD-like” animals. These results open the way to new exploration of physiological and “AD-like” aging in primates

    A class-wide phylogenetic assessment of Dothideomycetes

    Get PDF
    We present a comprehensive phylogeny derived from 5 genes, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, for 356 isolates and 41 families (six newly described in this volume) in Dothideomycetes. All currently accepted orders in the class are represented for the first time in addition to numerous previously unplaced lineages. Subclass Pleosporomycetidae is expanded to include the aquatic order Jahnulales. An ancestral reconstruction of basic nutritional modes supports numerous transitions from saprobic life histories to plant associated and lichenised modes and a transition from terrestrial to aquatic habitats are confirmed. Finally, a genomic comparison of 6 dothideomycete genomes with other fungi finds a high level of unique protein associated with the class, supporting its delineation as a separate taxon

    Using C. elegans to discover therapeutic compounds for ageing-associated neurodegenerative diseases

    Get PDF
    Age-associated neurodegenerative disorders such as Alzheimer’s disease are a major public health challenge, due to the demographic increase in the proportion of older individuals in society. However, the relatively few currently approved drugs for these conditions provide only symptomatic relief. A major goal of neurodegeneration research is therefore to identify potential new therapeutic compounds that can slow or even reverse disease progression, either by impacting directly on the neurodegenerative process or by activating endogenous physiological neuroprotective mechanisms that decline with ageing. This requires model systems that can recapitulate key features of human neurodegenerative diseases that are also amenable to compound screening approaches. Mammalian models are very powerful, but are prohibitively expensive for high-throughput drug screens. Given the highly conserved neurological pathways between mammals and invertebrates, Caenorhabditis elegans has emerged as a powerful tool for neuroprotective compound screening. Here we describe how C. elegans has been used to model various human ageing-associated neurodegenerative diseases and provide an extensive list of compounds that have therapeutic activity in these worm models and so may have translational potential

    Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders

    Get PDF
    Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively

    Еfficacy of Combined Treatment of Epithelial and Endothelial Corneal Dystrophy Using Corneal Crosslinking and Automated Posterior Lamellar Keratoplasty

    Get PDF
    The purpose: to establish a combined approach to the treatment of patients with epithelial and endothelial cornea dystrophy (EED) based on a comparative study of the results of one-step and two-step methods. Patients and methods. The study included 75 patients (81 eyes) with corneal EED, who underwent surgical treatment at the Ufa Eye Research Institute from 2011 to 2016. The patients were divided into two groups — the main group consisted of 43 (46 eyes, 57 %) patients, who underwent the first stage of the CC before surgical treatment of EED, the second stage after 1–12 months — automated posterior lamellar keratoplasty (APLK). In the control group, isolated APLK was performed in 32 (35 eyes, 43 %) patients. Results. After CC (1–10 days) in the main group an increase in corneal thickness due to edema enhancement in the cornea stroma was observed in patients with stage I–III of the corneal EED. After 3 months, a decrease in corneal thickness was recorded in patients of the main group with I-II stages of the disease (p < 0.05), after 6 months — in all stages of the corneal EED compared with the control group (p < 0.05). According to optical coherence tomography (OCT), a decrease in the total cornea thickness in both зфешутеы groups was noted within 12 months after APLK: in the main group from 667 ± 65 μm initially to 594 ± 31 μm, in the control group, where there was a pronounced corneal edema from 787 ± 56 to 612 ± 67 μm. Conclusion. Corneal cross-linking in patients with I–III stages of corneal EED provides improvement of the cornea, manifested in reducing edema and its thickness. It allows to delay the implementation of the automated posterior lamellar keratoplasty without corneal deterioration in patients with stage I up to 6–12 months, in patients with stage II–III up to 3–6 months

    Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery

    No full text
    The common fruit fly, Drosophila melanogaster, is a well studied and highly tractable genetic model organism for understanding molecular mechanisms of human diseases. Many basic biological, physiological, and neurological properties are conserved between mammals and D. melanogaster, and nearly 75% of human disease-causing genes are believed to have a functional homolog in the fly. In the discovery process for therapeutics, traditional approaches employ high-throughput screening for small molecules that is based primarily on in vitro cell culture, enzymatic assays, or receptor binding assays. The majority of positive hits identified through these types of in vitro screens, unfortunately, are found to be ineffective and/or toxic in subsequent validation experiments in whole-animal models. New tools and platforms are needed in the discovery arena to overcome these limitations. The incorporation of D. melanogaster into the therapeutic discovery process holds tremendous promise for an enhanced rate of discovery of higher quality leads. D. melanogaster models of human diseases provide several unique features such as powerful genetics, highly conserved disease pathways, and very low comparative costs. The fly can effectively be used for low- to high-throughput drug screens as well as in target discovery. Here, we review the basic biology of the fly and discuss models of human diseases and opportunities for therapeutic discovery for central nervous system disorders, inflammatory disorders, cardiovascular disease, cancer, and diabetes. We also provide information and resources for those interested in pursuing fly models of human disease, as well as those interested in using D. melanogaster in the drug discovery process
    corecore