1,064 research outputs found
Phase Diagram and Incommensurate Phases in Undoped Manganites
We study the existence of incommensurate phases in the phase diagram of the
two orbital double exchange model coupled with Jahn-Teller phonons and with
superexchange interactions. In agreement with experimental results, we find
that undoped manganites ( being some rare earth element) show
temperature induced commensurate-incommensurate phase transitions. In the
incommensurate phase the magnetic wave vector varies with temperature. The
incommensurate phase arises from the competition between the short range
antiferromagnetic superexchange interaction and the long range ferromagnetic
double exchange interaction
Zone center phonons of the orthorhombic RMnO3 (R = Pr, Eu, Tb, Dy, Ho) perovskites
A short range force constant model (SRFCM) has been applied for the first
time to investigate the phonons in RMnO3 (R = Pr, Eu, Tb, Dy, Ho) perovskites
in their orthorhombic phase. The calculations with 17 stretching and bending
force constants provide good agreement for the observed Raman frequencies. The
infrared frequencies have been assigned for the first time.
PACS Codes: 36.20.Ng, 33.20.Fb, 34.20.CfComment: 8 pages, 1 figur
Disorder induced phase segregation in La2/3Ca1/3MnO3 manganites
Neutron powder diffraction experiments on La2/3Ca1/3MnO3 over a broad
temperature range above and below the metal-insulator transition have been
analyzed beyond the Rietveld average approach by use of Reverse Monte Carlo
modelling. This approach allows the calculation of atomic pair distribution
functions and spin correlation functions constrained to describe the observed
Bragg and diffuse nuclear and magnetic scattering. The results evidence phase
separation within a paramagnetic matrix into ferro and antiferromagnetic
domains correlated to anistropic lattice distortions in the vicinity of the
metal-insulator transition.Comment: 3 pages, 4 figures. Submitted to Phys. Rev. Lett. Figure 1 replace
Measurement of the Lifetime Difference Between B_s Mass Eigenstates
We present measurements of the lifetimes and polarization amplitudes for B_s
--> J/psi phi and B_d --> J/psi K*0 decays. Lifetimes of the heavy (H) and
light (L) mass eigenstates in the B_s system are separately measured for the
first time by determining the relative contributions of amplitudes with
definite CP as a function of the decay time. Using 203 +/- 15 B_s decays, we
obtain tau_L = (1.05 +{0.16}/-{0.13} +/- 0.02) ps and tau_H = (2.07
+{0.58}/-{0.46} +/- 0.03) ps. Expressed in terms of the difference DeltaGamma_s
and average Gamma_s, of the decay rates of the two eigenstates, the results are
DeltaGamma_s/Gamma_s = (65 +{25}/-{33} +/- 1)%, and DeltaGamma_s = (0.47
+{0.19}/-{0.24} +/- 0.01) inverse ps.Comment: 8 pages, 3 figures, 2 tables; as published in Physical Review Letters
on 16 March 2005; revisions are for length and typesetting only, no changes
in results or conclusion
Search for the Higgs boson in events with missing transverse energy and b quark jets produced in proton-antiproton collisions at s**(1/2)=1.96 TeV
We search for the standard model Higgs boson produced in association with an
electroweak vector boson in events with no identified charged leptons, large
imbalance in transverse momentum, and two jets where at least one contains a
secondary vertex consistent with the decay of b hadrons. We use ~1 fb-1
integrated luminosity of proton-antiproton collisions at s**(1/2)=1.96 TeV
recorded by the CDF II experiment at the Tevatron. We find 268 (16) single
(double) b-tagged candidate events, where 248 +/- 43 (14.4 +/- 2.7) are
expected from standard model background processes. We place 95% confidence
level upper limits on the Higgs boson production cross section for several
Higgs boson masses ranging from 110 GeV/c2 to 140 GeV/c2. For a mass of 115
GeV/c2 the observed (expected) limit is 20.4 (14.2) times the standard model
prediction.Comment: 8 pages, 2 figures, submitted to Phys. Rev. Let
Measurement of and Production in Collisions at = 1.96 TeV
The Standard Model predictions for and production are
tested using an integrated luminosity of 200 pb of \ppbar collision data
collected at the Collider Detector at Fermilab. The cross sections are measured
selecting leptonic decays of the and bosons, and photons with
transverse energy GeV that are well separated from leptons. The
production cross sections and kinematic distributions for the and
are compared to SM predictions.Comment: 7 pages, 4 figures, submitted to PR
Measurement of Ratios of Fragmentation Fractions for Bottom Hadrons in p-pbar Collisions at sqrt{s}=1.96 TeV
This paper describes the first measurement of b-quark fragmentation fractions
into bottom hadrons in Run II of the Tevatron Collider at Fermilab. The result
is based on a 360 pb-1 sample of data collected with the CDF II detector in
p-pbar collisions at sqrt{s}=1.96 TeV. Semileptonic decays of B0, B+, and B_s
mesons, as well as Lambda_b baryons, are reconstructed. For an effective bottom
hadron p_T threshold of 7 GeV/c, the fragmentation fractions are measured to be
f_u/f_d=1.054 +/- 0.018 (stat) +0.025-0.045(sys) +/- 0.058 (Br),
f_s/(f_u+f_d)=0.160 +/- 0.005 (stat) +0.011-0.010 (sys) +0.057-0.034 (Br), and
f_{Lambda_b}/(f_u+f_d)=0.281\pm0.012 (stat) +0.058-0.056 (sys) +0.128-0.086
(Br), where the uncertainty (Br) is due to uncertainties on measured branching
ratios. The value of f_s/(f_u+f_d) agrees within one standard deviation with
previous CDF measurements and the world average of this quantity, which is
dominated by LEP measurements. However, the ratio f_{Lambda_b}/(f_u+f_d) is
approximately twice the value previously measured at LEP. The approximately 2
sigma discrepancy is examined in terms of kinematic differences between the two
production environments.Comment: Submitted to PRD, 54 pages, 53 plot
Observation and Mass Measurement of the Baryon
We report the observation and measurement of the mass of the bottom, strange
baryon through the decay chain , where
, , and .
Evidence for observation is based on a signal whose probability of arising from
the estimated background is 6.6 x 10^{-15}, or 7.7 Gaussian standard
deviations. The mass is measured to be (stat.) (syst.) MeV/.Comment: Minor text changes for the second version. Accepted by Phys. Rev.
Let
- …