487 research outputs found

    Repeated exposure to transient obstructive sleep apnea-related conditions causes an atrial fibrillation substrate in a chronic rat model

    Get PDF
    Background High night-to-night variability in obstructive sleep apnea (OSA) is associated with atrial fibrillation (AF). Obstructive apneas are characterized by intermittent deoxygenation-reoxygenation and intrathoracic pressure swings during ineffective inspiration against occluded upper airways. Objective We elucidated the effect of repeated exposure to transient OSA conditions simulated by intermittent negative upper airway pressure (INAP) on the development of an AF substrate. Methods INAP (48 events/4 h; apnea-hypopnea index 12 events/h) was applied in sedated spontaneously breathing rats (2% isoflurane) to simulate mild-to-moderate OSA. Rats without INAP served as a control group (CTR). In an acute test series (ATS), rats were either killed immediately (n = 9 per group) or after 24 hours of recovery (ATS-REC: n = 5 per group). To simulate high night-to-night variability in OSA, INAP applications (n = 10; 24 events/4 h; apnea-hypopnea index 6/h) were repeated every second day for 3 weeks in a chronic test series (CTS). Results INAP increased atrial oxidative stress acutely, represented in decreases of reduced to oxidized glutathione ratio (ATS: INAP: 0.33 ± 0.05 vs CTR: 1 ± 0.26; P = .016), which was reversible after 24 hours (ATS-REC: INAP vs CTR; P = .274). Although atrial oxidative stress did not accumulate in the CTS, atrial histological analysis revealed increased cardiomyocyte diameters, reduced connexin 43 expression, and increased interstitial fibrosis formation (CTS: INAP 7.0% ± 0.5% vs CTR 5.1% ± 0.3%; P = .013), which were associated with longer inducible AF episodes (CTS: INAP: 11.65 ± 4.43 seconds vs CTR: 0.7 ± 0.33 seconds; P = .033). Conclusion Acute simulation of OSA was associated with reversible atrial oxidative stress. Cumulative exposure to these transient OSA-related conditions resulted in AF substrates and was associated with increased AF susceptibility. Mild-to-moderate OSA with high night-to-night variability may deserve intensive management to prevent atrial substrate development

    The atrial natriuretic peptide (ANP) knockout mouse does not exhibit the phenotypic features of pre-eclampsia or demonstrate fetal growth restriction

    Get PDF
    The ANP knockout mouse is reported to exhibit pregnancy-associated hypertension, proteinuria and impaired placental trophoblast invasion and spiral artery remodeling, key features of pre-eclampsia (PE). We hypothesized that these mice may provide a relevant model of human PE with associated fetal growth restriction (FGR). Here, we investigated pregnancies of ANP wild type (ANP+/+), heterozygous (ANP+/-) and knockout (ANP−/-) mice. Maternal blood pressure did not differ between genotypes (E12.5, E17.5), and fetal weight (E18.5) was unaffected. Placental weight was greater in ANP−/− versus ANP+/+ mice. Therefore, in our hands, the ANP model does not express phenotypic features of PE with FGR

    From Women-Staffed to Women-Led: Gender and Leadership in Academic Libraries, 1974-2018.

    Full text link
    This article reviews post-1974 scholarly literature on women’s leadership in academic libraries, with the emphasis on the United States. The purpose of this synthesis is to highlight research areas and themes that have significantly expanded the profession’s knowledge about gender and its impact at the top administrative level. The article starts with a brief overview of theories of gender and leadership before tracing scholarship on the gendered career patterns singled out in Schiller’s work (1974). The article then focuses on additional issues related to gender and library administration, including leadership styles, perceptions of differences between male and female leaders, and the lack of diversity among academic library women directors

    The challenges of research data management in cardiovascular science: a DGK and DZHK position paper-executive summary

    Get PDF
    The sharing and documentation of cardiovascular research data are essential for efficient use and reuse of data, thereby aiding scientific transparency, accelerating the progress of cardiovascular research and healthcare, and contributing to the reproducibility of research results. However, challenges remain. This position paper, written on behalf of and approved by the German Cardiac Society and German Centre for Cardiovascular Research, summarizes our current understanding of the challenges in cardiovascular research data management (RDM). These challenges include lack of time, awareness, incentives, and funding for implementing effective RDM; lack of standardization in RDM processes; a need to better identify meaningful and actionable data among the increasing volume and complexity of data being acquired; and a lack of understanding of the legal aspects of data sharing. While several tools exist to increase the degree to which data are findable, accessible, interoperable, and reusable (FAIR), more work is needed to lower the threshold for effective RDM not just in cardiovascular research but in all biomedical research, with data sharing and reuse being factored in at every stage of the scientific process. A culture of open science with FAIR research data should be fostered through education and training of early-career and established research professionals. Ultimately, FAIR RDM requires permanent, long-term effort at all levels. If outcomes can be shown to be superior and to promote better (and better value) science, modern RDM will make a positive difference to cardiovascular science and practice. The full position paper is available in the supplementary materials

    Treatments targeting inotropy

    Get PDF
    Acute heart failure (HF) and in particular, cardiogenic shock are associated with high morbidity and mortality. A therapeutic dilemma is that the use of positive inotropic agents, such as catecholamines or phosphodiesterase-inhibitors, is associated with increased mortality. Newer drugs, such as levosimendan or omecamtiv mecarbil, target sarcomeres to improve systolic function putatively without elevating intracellular Ca2+. Although meta-analyses of smaller trials suggested that levosimendan is associated with a better outcome than dobutamine, larger comparative trials failed to confirm this observation. For omecamtiv mecarbil, Phase II clinical trials suggest a favourable haemodynamic profile in patients with acute and chronic HF, and a Phase III morbidity/mortality trial in patients with chronic HF has recently begun. Here, we review the pathophysiological basis of systolic dysfunction in patients with HF and the mechanisms through which different inotropic agents improve cardiac function. Since adenosine triphosphate and reactive oxygen species production in mitochondria are intimately linked to the processes of excitation-contraction coupling, we also discuss the impact of inotropic agents on mitochondrial bioenergetics and redox regulation. Therefore, this position paper should help identify novel targets for treatments that could not only safely improve systolic and diastolic function acutely, but potentially also myocardial structure and function over a longer-term
    • 

    corecore