12,039 research outputs found

    LOFF Pairing vs. Breached Pairing in Asymmetric Fermion Superfluids

    Full text link
    A general analysis for the competition between breached pairing (BP) and LOFF pairing mechanisms in asymmetric fermion superfluids is presented in the frame of a four fermion interaction model. Two physical conditions which can induce mismatched Fermi surfaces are considered: (1) fixed chemical potential asymmetry δμ\delta\mu and (2) fixed fermion number asymmetry α\alpha. In case (1), the BP state is ruled out because of Sarma instability and LOFF state is thermodynamically stable in a narrow window of δμ\delta\mu. In case (2), while the Sarma instability can be avoided and both the BP and LOFF states can survive provided α\alpha is less than the corresponding critical value, the BP state suffers magnetic instability and the LOFF state is always thermodynamically stable. While the LOFF window in case (2) is much larger than the one in the conventional case (1), for small α\alpha the longitudinal superfluid density of the LOFF state is negative and it suffers also magnetic instability.Comment: 12 pages, 13 figures, published in Physical Review B. Notice: an algebra error in Equation (39) correcte

    Exclusive B→PVB \to PV Decays and CP Violation in the General two-Higgs-doublet Model

    Full text link
    We calculate all the branching ratios and direct CP violations of B→PVB \to PV decays in a most general two-Higgs-doublet model with spontaneous CP violation. As the model has rich CP-violating sources, it is shown that the new physics effects to direct CP violations and branching ratios in some channels can be significant when adopting the generalized factorization approach to evaluate the hadronic matrix elements, which provides good signals for probing new physics beyond the SM in the future B experiments.Comment: 21 page

    Broadband phased array antenna steering by means of coherent signal combining in an integrated ring resonator-based optical beamformer

    Get PDF
    A squint-free, continuously tunable optical beamformer for broadband phased array receive antennas is proposed. The complete system is demonstrated, including E/O and O/E conversions, and optical signal processing. The latter involves delay synchronization and coherent optical combining, which is performed in an integrated ring resonator-based optical beam forming network, realized in low-loss, CMOScompatible TriPleX technology. Successful combination of four beamformer input channels has been demonstrated by means of RF-to-RF measurements

    Spectral and dynamic characteristics of buried-heterostructure single quantum well (Al,Ga)As lasers

    Get PDF
    We demonstrate that, as predicted, (Al,Ga)As single quantum well (SQW) lasers have substantially narrower spectral linewidths than bulk double-heterostructure lasers. We have observed a further major reduction (>3×) in the linewidth of these SQW lasers when the facet reflectivities are enhanced. This observation is explained theoretically on the basis of the very low losses in coated SQW lasers and the value of the spontaneous emission factor at low threshold currents. We also report on the modulation frequency response parameter of these SQW lasers

    Paramagnetic Meissner Effect and Finite Spin Susceptibility in an Asymmetric Superconductor

    Full text link
    A general analysis of Meissner effect and spin susceptibility of a uniform superconductor in an asymmetric two-component fermion system is presented in nonrelativistic field theory approach. We found that, the pairing mechanism dominates the magnetization property of superconductivity, and the asymmetry enhances the paramagnetism of the system. At the turning point from BCS to breached pairing superconductivity, the Meissner mass squared and spin susceptibility are divergent at zero temperature. In the breached pairing state induced by chemical potential difference and mass difference between the two kinds of fermions, the system goes from paramagnetism to diamagnetism, when the mass ratio of the two species increases.Comment: 17pages, 2 figures, published in Physical Review

    Multiwavelength optical beam forming network with ring resonator-based binary-tree architecture for broadband phased array antenna systems

    Get PDF
    Integrated optical beam forming networks (OBFNs) offer many advantages for phased array applications. ORR-based true-time-delay units can be cascaded in a binary tree topology and tuned for continuously-adjustable broadband time delay. Nonetheless, with large number of antenna elements, the OBFN may become very complex. A novel idea is proposed to exploit the frequency periodicity of the ORRs and the WDM technique to achieve multiple-signal-paths on a single beamformer, thus reducing complexity and costs. The use of high index contrast waveguides in Si-compatible technology further reduces chip footprint and allows the use of integrated OBFNs for large arrays and multi-beam applications
    • …
    corecore