111 research outputs found

    The relationship between coronary artery distensibility and fractional flow reserve

    Get PDF
    Discordance between angiography-based anatomical assessment of coronary stenosis severity and fractional flow reserve (FFR) has been attributed to several factors including lesion length and irregularity, and the myocardial territory supplied by the target vessel. We sought to examine if coronary arterial distensibility is an independent contributor to this discordance. There were two parts to this study. The first consisted of "in silico" models of 26 human coronary arteries. Computational fluid dynamics-derived FFR was calculated for fully rigid, partially distensible and fully distensible models of the 26 arteries. The second part of the study consisted of 104 patients who underwent coronary angiography and FFR measurement. Distensibility at the lesion site (DistensibilityMLA) and for the reference vessel (DistensibilityRef) was determined by analysing three-dimensional angiography images during end-systole and end-diastole. Computational fluid dynamics-derived FFR was 0.67±0.19, 0.70±0.18 and 0.75±0.17 (P<0.001) in the fully rigid, partially distensible and fully distensible models respectively. FFR correlated with both DistensibilityMLA (r = 0.36, P<0.001) and DistensibilityRef (r = 0.44, P<0.001). Two-way ANCOVA analysis revealed that DistensibilityMLA (F (1, 100) = 4.17, p = 0.031) and percentage diameter stenosis (F (1, 100) = 60.30, p < 0.01) were both independent predictors of FFR. Coronary arterial distensibility is a novel, independent determinant of FFR, and an important factor contributing to the discordance between anatomical and functional assessment of stenosis severity.Andy S.C. Yong, Ashkan Javadzadegan, William F. Fearon, Abouzar Moshfegh, Jerrett K. Lau, Stephen Nicholls, Martin K.C. Ng, Leonard Kritharide

    The Dynamin Chemical Inhibitor Dynasore Impairs Cholesterol Trafficking and Sterol-Sensitive Genes Transcription in Human HeLa Cells and Macrophages

    Get PDF
    Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore strongly inhibited the uptake of low-density lipoprotein (LDL) in HeLa cells, and to a lower extent in human macrophages. In both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC) within the endolysosomal network. The measure of cholesterol esters (CE) further showed that the delivery of regulatory cholesterol to the endoplasmic reticulum (ER) was deficient. This resulted in the inhibition of the transcriptional control of the three major sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2), 3-hydroxy-3-methyl-coenzymeA reductase (HMGCoAR), and low-density lipoprotein receptor (LDLR). The sequestration of cholesterol in the endolysosomal compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the intracellular transport of cholesterol

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P &lt; 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Clinical Pathway for Coronary Atherosclerosis in Patients Without Conventional Modifiable Risk Factors JACC State-of-the-Art Review

    Get PDF
    Reducing the incidence and prevalence of standard modifiable cardiovascular risk factors (SMuRFs) is critical to tackling the global burden of coronary artery disease (CAD). However, a substantial number of individuals develop coronary atherosclerosis despite no SMuRFs. SMuRFless patients presenting with myocardial infarction have been observed to have an unexpected higher early mortality compared to their counterparts with at least 1 SMuRF. Evidence for optimal management of these patients is lacking. We assembled an international, multidisciplinary team to develop an evidence-based clinical pathway for SMuRFless CAD patients. A modified Delphi method was applied. The resulting pathway confirms underlying atherosclerosis and true SMuRFless status, ensures evidence-based secondary prevention, and considers additional tests and interventions for less typical contributors. This dedicated pathway for a previously overlooked CAD population, with an accompanying registry, aims to improve outcomes through enhanced adherence to evidence-based secondary prevention and additional diagnosis of modifiable risk factors observed

    HPLC analysis of discrete haptoglobin isoform N-linked oligosaccharides following 2D-PAGE isolation

    No full text
    Glycosylation is a common but variable modification that regulates glycoprotein structure and function. We combined small format 2D-PAGE with HPLC to analyse discrete human haptoglobin isoform N-glycans. Seven major and several minor haptoglobin isoforms were detected by 2D-PAGE. N-Glycans released from Coomassie-stained gel spots using PNGase were labeled at their reducing termini with 2-aminobenzamide. HPLC analysis of selected major isoform N-glycans indicated that sialic acid composition determined their Separation by isoelectric focussing. N-Glycans from two doublets of quantitatively minor isoforms were also analysed. Although separation of each pair of doublets was influenced by sialylation, individual spots within each doublet contained identical N-glycans. Thus, heterogeneity in minor haptoglobin isoforms was due to modifications distinct from N-glycan structure. These studies describe a simple method for analysing low abundance protein N-glycans and provide details of discrete haptoglobin isoform N-glycan structures which will be useful in proteomic analysis of human plasma samples. (c) 2006 Elsevier Inc. All rights reserved

    Short Sleep Duration Is Associated with Risk of Future Diabetes but Not Cardiovascular Disease: a Prospective Study and Meta-Analysis

    No full text
    Genetic factors explain a majority of risk variance for age-related macular degeneration (AMD). While genome-wide association studies (GWAS) for late AMD implicate genes in complement, inflammatory and lipid pathways, the genetic architecture of early AMD has been relatively under studied. We conducted a GWAS meta-analysis of early AMD, including 4,089 individuals with prevalent signs of early AMD (soft drusen and/or retinal pigment epithelial changes) and 20,453 individuals without these signs. For various published late AMD risk loci, we also compared effect sizes between early and late AMD using an additional 484 individuals with prevalent late AMD. GWAS meta-analysis confirmed previously reported association of variants at the complement factor H (CFH) (peak P = 1.5×10(-31)) and age-related maculopathy susceptibility 2 (ARMS2) (P = 4.3×10(-24)) loci, and suggested Apolipoprotein E (ApoE) polymorphisms (rs2075650; P = 1.1×10(-6)) associated with early AMD. Other possible loci that did not reach GWAS significance included variants in the zinc finger protein gene GLI3 (rs2049622; P = 8.9×10(-6)) and upstream of GLI2 (rs6721654; P = 6.5×10(-6)), encoding retinal Sonic hedgehog signalling regulators, and in the tyrosinase (TYR) gene (rs621313; P = 3.5×10(-6)), involved in melanin biosynthesis. For a range of published, late AMD risk loci, estimated effect sizes were significantly lower for early than late AMD. This study confirms the involvement of multiple established AMD risk variants in early AMD, but suggests weaker genetic effects on the risk of early AMD relative to late AMD. Several biological processes were suggested to be potentially specific for early AMD, including pathways regulating RPE cell melanin content and signalling pathways potentially involved in retinal regeneration, generating hypotheses for further investigation
    corecore