497 research outputs found

    Intercontinental invasion dynamics of Cercopagis pengoi, an IUCN-listed planktonic invasive species

    Get PDF
    Predicting the spread of invasive species and understanding the role of niche dynamics in niche transferability are critical challenges in the management of biological invasions, both theoretically and practically. We used complementary species distribution modelling approaches, such as multivariate niche analysis and reciprocal distribution models, to test the niche conservatism hypothesis and to predict the potential distribution of the fishhook waterflea, Cercopagis pengoi. Our analysis indicated a significant similarity between its native and invasive ranges, suggesting that a subset of the Ponto-Caspian propagules may have been the founders of European populations. However, our results contradict the niche conservatism hypothesis, showing that C. pengoi has not fully occupied the available niche within its current invasive ranges. Moreover, we observed a notable niche expansion, reflecting a significant shift in niche following its intercontinental introduction in North America. Given the suitability of new environments for the expansion of C. pengoi and its tendency to evade detection prior to population surges, we recommend a focus on early detection through monitoring of both water columns and bottom sediments. This should be complemented by strict enforcement of ballast water regulations to curtail its spread in North America, Europe, and other suitable non-native regions globally

    Shared Spatial Situation Awareness as a Team Performance Indicator in Collaborative Spatial Orientation Task

    Get PDF
    International audienceThe present study investigates the link between time taken by a team to perform a spatial orientation task and the evaluation of spatial shared situational awareness (SSA). Paired in teams, volunteers have to collaborate to send a vehicle to a specific location on a computer simulation as quickly as they can. The roles and information they have to reach that goal are different. Every 45 seconds participants are asked to mark on their map the location they believe the vehicle to be. Along with its real position, these marks are used to objectively evaluate spatial SSA. First results allow us to divide participants into three groups in accordance with Endsley's distinction of Shared SA evaluation. Interestingly, fastest teams were not the ones with the most accurate and shared spatial representation of the situation. Potential use of such indicators in team training is outlined

    The Siren Site and the Long Transition from Archaic to Late Prehistoric Lifeways on the Eastern Edwards Plateau of Central Texas

    Get PDF
    On behalf of the Texas Department of Transportation (TxDOT), SWCA Environmental Consultants (SWCA) conducted testing and data recovery investigations at the Siren site (41WM1126), a prehistoric multi-component site in the Interstate Highway 35 right-of-way along the South Fork of the San Gabriel River in Williamson County, Texas. The work was done to fulfill TxDOT’s compliance obligations under the National Historic Preservation Act and the Antiquities Code of Texas. The testing investigations were conducted under Antiquities Permit 3834, and the subsequent data recovery was under Permit 3938. Kevin Miller served as Principal Investigator on both permits. Though the site extends far beyond the area of potential effects both horizontally and vertically, the investigations focused on Late Archaic and Late Prehistoric components within a relatively limited area that would be subject to project impacts. The investigations were conducted in February 2006. The investigations identified five isolable components that were intermittently laid down from approximately 2600 to 900 years ago. A substantial Late Prehistoric Austin phase occupation is represented by Scallorn projectile points, stone tools, burned rock, faunal materials, and radiocarbon dates from cooking features. The component feature assemblage includes a cluster of discrete, well-preserved burned rock features that range from small fire-cracked rock concentrations to a large, slab-lined feature that dominates the cluster. The underlying components include four cultural strata representing a series of phases in the final millennium or so of the long Archaic period. These components span approximately 2600 to 1500 b.p., though earlier, deeply buried components were also noted on the site. These deeper deposits were not the focus of the investigations, however, since they would not be affected by the project. The Archaic components revealed a suite of small side-notched dart points such as Ensor, Fairland, and Frio, as well as many earlier broad-bladed styles such as Castroville, Montell, Marshall, and Pedernales. These robust components contained numerous burned rock features of varying size and function, abundant tools, well-preserved faunal materials, macrobotanical remains including geophytes from several earth ovens, and a large suite of radiocarbon dates. The features include an incipient burned rock midden, burned rock clusters, a debitage reduction area, a biface cache, slab-lined hearths, basin-shaped hearths, and small circular hearths. The distributions of artifacts and features within the Archaic components across the excavation blocks showed significant variations. These differences reflect sequential components that provide a view of diachronic trends in technology, subsistence, economy, and a suite of other behaviors and activities during the long transition from Archaic to Late Prehistoric adaptations. As previously determined by the testing excavations and further substantiated by the data recovery investigations, the Siren site, most notably the Late Archaic and Late Prehistoric components, is eligible for the National Register of Historic Places under Criterion D, 36 CFR 60.4, and eligible for State Archeological Landmark designation under Criteria 1 and 2 of the Rules of Practice and Procedure for the Antiquities Code of Texas, 13 TAC 26.8. The excavations and subsequent analysis have mitigated the adverse effects of the bridge construction by recovering the vast majority of the affected components within the area of potential effect. No further archaeological work is recommended. Portions of the site outside the area of potential effects have not been fully evaluated, and any future impacts beyond the mitigated areas warrant further assessment

    Artificial intelligence and visual analytics in geographical space and cyberspace: Research opportunities and challenges

    Get PDF
    In recent decades, we have witnessed great advances on the Internet of Things, mobile devices, sensor-based systems, and resulting big data infrastructures, which have gradually, yet fundamentally influenced the way people interact with and in the digital and physical world. Many human activities now not only operate in geographical (physical) space but also in cyberspace. Such changes have triggered a paradigm shift in geographic information science (GIScience), as cyberspace brings new perspectives for the roles played by spatial and temporal dimensions, e.g., the dilemma of placelessness and possible timelessness. As a discipline at the brink of even bigger changes made possible by machine learning and artificial intelligence, this paper highlights the challenges and opportunities associated with geographical space in relation to cyberspace, with a particular focus on data analytics and visualization, including extended AI capabilities and virtual reality representations. Consequently, we encourage the creation of synergies between the processing and analysis of geographical and cyber data to improve sustainability and solve complex problems with geospatial applications and other digital advancements in urban and environmental sciences
    corecore