8 research outputs found

    Ligand Binding Study of Human PEBP1/RKIP: Interaction with Nucleotides and Raf-1 Peptides Evidenced by NMR and Mass Spectrometry

    Get PDF
    Background Human Phosphatidylethanolamine binding protein 1 (hPEBP1) also known as Raf kinase inhibitory protein (RKIP), affects various cellular processes, and is implicated in metastasis formation and Alzheimer's disease. Human PEBP1 has also been shown to inhibit the Raf/MEK/ERK pathway. Numerous reports concern various mammalian PEBP1 binding ligands. However, since PEBP1 proteins from many different species were investigated, drawing general conclusions regarding human PEBP1 binding properties is rather difficult. Moreover, the binding site of Raf-1 on hPEBP1 is still unknown. Methods/Findings In the present study, we investigated human PEBP1 by NMR to determine the binding site of four different ligands: GTP, FMN, and one Raf-1 peptide in tri-phosphorylated and non-phosphorylated forms. The study was carried out by NMR in near physiological conditions, allowing for the identification of the binding site and the determination of the affinity constants KD for different ligands. Native mass spectrometry was used as an alternative method for measuring KD values. Conclusions/Significance Our study demonstrates and/or confirms the binding of hPEBP1 to the four studied ligands. All of them bind to the same region centered on the conserved ligand-binding pocket of hPEBP1. Although the affinities for GTP and FMN decrease as pH, salt concentration and temperature increase from pH 6.5/NaCl 0 mM/20°C to pH 7.5/NaCl 100 mM/30°C, both ligands clearly do bind under conditions similar to what is found in cells regarding pH, salt concentration and temperature. In addition, our work confirms that residues in the vicinity of the pocket rather than those within the pocket seem to be required for interaction with Raf-1.METASU

    SSPaQ: A Subtractive Segmentation Approach for the Exhaustive Parallel Quantification of the Extent of Protein Modification at Every Possible Site

    No full text
    International audienceProtein modifications, whether chemically induced or post-translational (PTMs), play an essential role for the biological activity of proteins. Understanding biological processes and alterations thereof will rely on the quantification of these modifications on individual residues. Here we present SSPaQ, a subtractive method for the parallel quantification of the extent of modification at each possible site of a protein. The method combines uniform isotopic labeling and proteolysis with MS, followed by a segmentation approach, a powerful tool to refine the quantification of the degree of modification of a peptide to a segment containing a single modifiable amino acid. The strength of this strategy resides in: (1) quantification of all modifiable sites in a protein without prior knowledge of the type(s) of modified residues; (2) insensitivity to changes in the solubility and ionization efficiency of peptides upon modification; and (3) detection of missed cleavages caused by the modification for mitigation. The SSPaQ method was applied to quantify modifications resulting from the interaction of human phosphatidyl ethanolamine binding protein 1 (hPEBP1), a metastasis suppressor gene product, with locostatin, a covalent ligand and antimigratory compound with demonstrated activity towards hPEBP1. Locostatin is shown to react with several residues of the protein. SSPaQ can more generally be applied to induced modification in the context of drugs that covalently bind their target protein. With an alternate front-end protocol, it could also be applied to the quantification of protein PTMs, provided a removal tool is available for that PT

    Mass Spectrometry Methods for Studying Structure and Dynamics of Biological Macromolecules

    No full text
    corecore