262 research outputs found
Transport coefficients from the Boson Uehling-Uhlenbeck Equation
We derive microscopic expressions for the bulk viscosity, shear viscosity and
thermal conductivity of a quantum degenerate Bose gas above , the critical
temperature for Bose-Einstein condensation. The gas interacts via a contact
potential and is described by the Uehling-Uhlenbeck equation. To derive the
transport coefficients, we use Rayleigh-Schrodinger perturbation theory rather
than the Chapman-Enskog approach. This approach illuminates the link between
transport coefficients and eigenvalues of the collision operator. We find that
a method of summing the second order contributions using the fact that the
relaxation rates have a known limit improves the accuracy of the computations.
We numerically compute the shear viscosity and thermal conductivity for any
boson gas that interacts via a contact potential. We find that the bulk
viscosity remains identically zero as it is for the classical case.Comment: 10 pages, 2 figures, submitted to Phys. Rev.
Damping of sound waves in superfluid nucleon-hyperon matter of neutron stars
We consider sound waves in superfluid nucleon-hyperon matter of massive
neutron-star cores. We calculate and analyze the speeds of sound modes and
their damping times due to the shear viscosity and non-equilibrium weak
processes of particle transformations. For that, we employ the dissipative
relativistic hydrodynamics of a superfluid nucleon-hyperon mixture, formulated
recently [M.E. Gusakov and E.M. Kantor, Phys. Rev. D78, 083006 (2008)]. We
demonstrate that the damping times of sound modes calculated using this
hydrodynamics and the ordinary (nonsuperfluid) one, can differ from each other
by several orders of magnitude.Comment: 15 pages, 5 figures, Phys. Rev. D accepte
Topological phases and circulating states of Bose-Einstein condensates
We show that the quantum topological effect predicted by Aharonov and Casher
(AC effect) [Phys. Rev. Lett. 53, 319 (1984)] may be used to create circulating
states of magnetically trapped atomic Bose-Einstein condensates (BEC). A simple
experimental setup is suggested based on a multiply connected geometry such as
a toroidal trap or a magnetic trap pinched by a blue-detuned laser. We give
numerical estimates of such effects within the current atomic BEC experiments,
and point out some interesting properties of the associated quantized
circulating states.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev.
Bulk viscosity of superfluid neutron stars
The hydrodynamics, describing dynamical effects in superfluid neutron stars,
essentially differs from the standard one-fluid hydrodynamics. In particular,
we have four bulk viscosity coefficients in the theory instead of one. In this
paper we calculate these coefficients, for the first time, assuming they are
due to non-equilibrium beta-processes (such as modified or direct Urca
process). The results of our analysis are used to estimate characteristic
damping times of sound waves in superfluid neutron stars. It is demonstrated
that all four bulk viscosity coefficients lead to comparable dissipation of
sound waves and should be considered on the same footing.Comment: 11 pages, 1 figure, this version with some minor stylistic changes is
published in Phys. Rev.
Condensate and superfluid fractions for varying interactions and temperature
A system with Bose-Einstein condensate is considered in the frame of the
self-consistent mean-field approximation, which is conserving, gapless, and
applicable for arbitrary interaction strengths and temperatures. The main
attention is paid to the thorough analysis of the condensate and superfluid
fractions in a wide region of interaction strengths and for all temperatures
between zero and the critical point T_c. The normal and anomalous averages are
shown to be of the same order for almost all interactions and temperatures,
except the close vicinity of T_c. But even in the vicinity of the critical
temperature, the anomalous average cannot be neglected, since only in the
presence of the latter the phase transition at T_c becomes of second order, as
it should be. Increasing temperature influences the condensate and superfluid
fractions in a similar way, by diminishing them. But their behavior with
respect to the interaction strength is very different. For all temperatures,
the superfluid fraction is larger than the condensate fraction. These coincide
only at T_c or under zero interactions. For asymptotically strong interactions,
the condensate is almost completely depleted, even at low temperatures, while
the superfluid fraction can be close to one.Comment: Latex file, 22 pages, 5 figure
Bulk viscosity of superfluid hyperon stars
We calculated bulk viscosity due to non-equilibrium weak processes in
superfluid nucleon-hyperon matter of neutron stars. For that, the dissipative
relativistic hydrodynamics, formulated in paper [1] for superfluid mixtures,
was extended to the case when both nucleons and hyperons are superfluid. It was
demonstrated that in the most general case (when neutrons, protons, Lambda, and
Sigma^{-} hyperons are superfluid), non-equilibrium weak processes generate
sixteen bulk viscosity coefficients, with only three of them being independent.
In addition, we corrected an inaccuracy in a widely used formula for the bulk
viscosity of non-superfluid nucleon-hyperon matter.Comment: 22 pages, 2 figure
Mechanisms for Stable Sonoluminescence
A gas bubble trapped in water by an oscillating acoustic field is expected to
either shrink or grow on a diffusive timescale, depending on the forcing
strength and the bubble size. At high ambient gas concentration this has long
been observed in experiments. However, recent sonoluminescence experiments show
that in certain circumstances when the ambient gas concentration is low the
bubble can be stable for days. This paper presents mechanisms leading to
stability which predict parameter dependences in agreement with the
sonoluminescence experiments.Comment: 4 pages, 3 figures on request (2 as .ps files
Superconductor-to-Metal Transitions in Dissipative Chains of Mesoscopic Grains and Nanowires
The interplay of quantum fluctuations and dissipation in chains of mesoscopic
superconducting grains is analyzed, and the results are also applied to
nanowires. It is shown that in 1-d arrays of resistively shunted Josephson
junctions, the superconducting-normal charge relaxation within the grains plays
an important role. At zero temperature, two superconducting phases can exist,
depending primarily on the strength of the dissipation. In the fully
superconducting phase (FSC), each grain acts superconducting, and the coupling
to the dissipative conduction is important. In the SC* phase, the dissipation
is irrelevant at long wavelengths. The phase transitions between these two
superconducting phases and the normal metallic phase may be either local or
global, and possess rich and complex critical properties. These are inferred
from both weak and strong coupling renormalization group analyses. At
intermediate temperatures, near either superconductor-to-normal phase
transition, there are regimes of super-metallic behavior, in which the
resistivity first decreases gradually with decreasing temperature before
eventually increasing as temperature is lowered further. The results on chains
of Josephson junctions are extended to continuous superconducting nanowires and
the subtle issue of whether these can exhibit an FSC phase is considered.
Potential relevance to superconductor-metal transitions in other systems is
also discussed.Comment: 42 pages, 14 figure
Sonoluminescing air bubbles rectify argon
The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the
percentage of inert gas within the bubble. We propose a theory for this
dependence, based on a combination of principles from sonochemistry and
hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent
reaction to water soluble gases implies that strongly forced air bubbles
eventually consist of pure argon. Thus it is the partial argon (or any other
inert gas) pressure which is relevant for stability. The theory provides
quantitative explanations for many aspects of SBSL.Comment: 4 page
Warfare, Fiscal Capacity, and Performance
We exploit differences in casualties sustained in pre-modern wars to estimate the impact of fiscal capacity on economic performance. In the past, states fought different amounts of external conflicts, of various lengths and magnitudes. To raise the revenues to wage wars, states made fiscal innovations, which persisted and helped to shape current fiscal institutions. Economic historians claim that greater fiscal capacity was the key long-run institutional change brought about by historical conflicts. Using casualties sustained in pre-modern wars to instrument for current fiscal institutions, we estimate substantial impacts of fiscal capacity on GDP per worker. The results are robust to a broad range of specifications, controls, and sub-samples
- …