80,118 research outputs found

    Numerical study of the optical nonlinearity of doped and gapped graphene: From weak to strong field excitation

    Full text link
    Numerically solving the semiconductor Bloch equations within a phenomenological relaxation time approximation, we extract both the linear and nonlinear optical conductivities of doped graphene and gapped graphene under excitation by a laser pulse. We discuss in detail the dependence of second harmonic generation, third harmonic generation, and the Kerr effects on the doping level, the gap, and the electric field amplitude. The numerical results for weak electric fields agree with those calculated from available analytic perturbation formulas. For strong electric fields when saturation effects are important, all the effective third order nonlinear response coefficients show a strong field dependence.Comment: 12 pages with 9 figure

    Third order nonlinearity of graphene: effects of phenomenological relaxation and finite temperature

    Full text link
    We investigate the effect of phenomenological relaxation parameters on the third order optical nonlinearity of doped graphene by perturbatively solving the semiconductor Bloch equation around the Dirac points. An analytic expression for the nonlinear conductivity at zero temperature is obtained under the linear dispersion approximation. With this analytic formula as starting point, we construct the conductivity at finite temperature and study the optical response to a laser pulse of finite duration. We illustrate the dependence of several nonlinear optical effects, such as third harmonic generation, Kerr effects and two photon absorption, parametric frequency conversion, and two color coherent current injection, on the relaxation parameters, temperature, and pulse duration. In the special case where one of the electric fields is taken as a dc field, we investigate the dc-current and dc-field induced second order nonlinearities, including dc-current induced second harmonic generation and difference frequency generation.Comment: 23+ pages, 10 figures. In this version we correct a sign typo in Eq. (25), for which we thank the discussion in the work http://arxiv.org/abs/1506.00534v

    Intense terahertz laser fields on a two-dimensional electron gas with Rashba spin-orbit coupling

    Full text link
    The spin-dependent density of states and the density of spin polarization of an InAs-based two-dimensional electron gas with the Rashba spin-orbit coupling under an intense terahertz laser field are investigated by utilizing the Floquet states to solve the time-dependent Schr\"odinger equation. It is found that both densities are strongly affected by the terahertz laser field. Especially a terahertz magnetic moment perpendicular to the external terahertz laser field in the electron gas is induced. This effect can be used to convert terahertz electric signals into terahertz magnetic ones efficiently.Comment: 3 pages, 3 figures, a typo in Fig. 3(b) is correcte
    corecore