3,312 research outputs found

    Multi-center MICZ-Kepler systems

    Full text link
    We present the classical solutions of the two-center MICZ-Kepler and MICZ-Kepler-Stark systems. Then we suggest the model of multi-center MICZ-Kepler system on the curved spaces equipped with so(3)so(3)-invariant conformal flat metrics.Comment: 7 pages, typos corrected, refs added. Contribution to the Proceedings of International Workshop on Classical and Quantum Integrable systems, 24-28.01.2007, Dubna, Russi

    Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: III. Interference Caused by a Double Pulse

    Full text link
    In order to study consequences of the differences between the ionic-to-neutral and neutral-to-ionic transitions in the one-dimensional extended Peierls-Hubbard model with alternating potentials for the TTF-CA complex, we introduce a double pulse of oscillating electric field in the time-dependent Schr\"odinger equation and vary the interval between the two pulses as well as their strengths. When the dimerized ionic phase is photoexcited, the interference effect is clearly observed owing to the coherence of charge density and lattice displacements. Namely, the two pulses constructively interfere with each other if the interval is a multiple of the period of the optical lattice vibration, while they destructively interfere if the interval is a half-odd integer times the period, in the processes toward the neutral phase. The interference is strong especially when the pulse is strong and short because the coherence is also strong. Meanwhile, when the neutral phase is photoexcited, the interference effect is almost invisible or weakly observed when the pulse is weak. The photoinduced lattice oscillations are incoherent due to random phases. The strength of the interference caused by a double pulse is a key quantity to distinguish the two transitions and to evaluate the coherence of charge density and lattice displacements.Comment: 16 pages, 8 figure

    A Generalization of the Kepler Problem

    Full text link
    We construct and analyze a generalization of the Kepler problem. These generalized Kepler problems are parameterized by a triple (D,κ,μ)(D, \kappa, \mu) where the dimension D3D\ge 3 is an integer, the curvature κ\kappa is a real number, the magnetic charge μ\mu is a half integer if DD is odd and is 0 or 1/2 if DD is even. The key to construct these generalized Kepler problems is the observation that the Young powers of the fundamental spinors on a punctured space with cylindrical metric are the right analogues of the Dirac monopoles.Comment: The final version. To appear in J. Yadernaya fizik

    Geometric Approach to Lyapunov Analysis in Hamiltonian Dynamics

    Get PDF
    As is widely recognized in Lyapunov analysis, linearized Hamilton's equations of motion have two marginal directions for which the Lyapunov exponents vanish. Those directions are the tangent one to a Hamiltonian flow and the gradient one of the Hamiltonian function. To separate out these two directions and to apply Lyapunov analysis effectively in directions for which Lyapunov exponents are not trivial, a geometric method is proposed for natural Hamiltonian systems, in particular. In this geometric method, Hamiltonian flows of a natural Hamiltonian system are regarded as geodesic flows on the cotangent bundle of a Riemannian manifold with a suitable metric. Stability/instability of the geodesic flows is then analyzed by linearized equations of motion which are related to the Jacobi equations on the Riemannian manifold. On some geometric setting on the cotangent bundle, it is shown that along a geodesic flow in question, there exist Lyapunov vectors such that two of them are in the two marginal directions and the others orthogonal to the marginal directions. It is also pointed out that Lyapunov vectors with such properties can not be obtained in general by the usual method which uses linearized Hamilton's equations of motion. Furthermore, it is observed from numerical calculation for a model system that Lyapunov exponents calculated in both methods, geometric and usual, coincide with each other, independently of the choice of the methods.Comment: 22 pages, 14 figures, REVTeX

    3D Oscillator and Coulomb Systems reduced from Kahler spaces

    Full text link
    We define the oscillator and Coulomb systems on four-dimensional spaces with U(2)-invariant Kahler metric and perform their Hamiltonian reduction to the three-dimensional oscillator and Coulomb systems specified by the presence of Dirac monopoles. We find the Kahler spaces with conic singularity, where the oscillator and Coulomb systems on three-dimensional sphere and two-sheet hyperboloid are originated. Then we construct the superintegrable oscillator system on three-dimensional sphere and hyperboloid, coupled to monopole, and find their four-dimensional origins. In the latter case the metric of configuration space is non-Kahler one. Finally, we extend these results to the family of Kahler spaces with conic singularities.Comment: To the memory of Professor Valery Ter-Antonyan, 11 page

    On two superintegrable nonlinear oscillators in N dimensions

    Full text link
    We consider the classical superintegrable Hamiltonian system given by H=T+U=p2/2(1+λq2)+ω2q2/2(1+λq2)H=T+U={p^2}/{2(1+\lambda q^2)}+{{\omega}^2 q^2}/{2(1+\lambda q^2)}, where U is known to be the "intrinsic" oscillator potential on the Darboux spaces of nonconstant curvature determined by the kinetic energy term T and parametrized by {\lambda}. We show that H is Stackel equivalent to the free Euclidean motion, a fact that directly provides a curved Fradkin tensor of constants of motion for H. Furthermore, we analyze in terms of {\lambda} the three different underlying manifolds whose geodesic motion is provided by T. As a consequence, we find that H comprises three different nonlinear physical models that, by constructing their radial effective potentials, are shown to be two different nonlinear oscillators and an infinite barrier potential. The quantization of these two oscillators and its connection with spherical confinement models is briefly discussed.Comment: 11 pages; based on the contribution to the Manolo Gadella Fest-60 years-in-pucelandia, "Recent advances in time-asymmetric quantum mechanics, quantization and related topics" hold in Valladolid (Spain), 14-16th july 201

    Generalized Taub-NUT metrics and Killing-Yano tensors

    Get PDF
    A necessary condition that a St\"ackel-Killing tensor of valence 2 be the contracted product of a Killing-Yano tensor of valence 2 with itself is re-derived for a Riemannian manifold. This condition is applied to the generalized Euclidean Taub-NUT metrics which admit a Kepler type symmetry. It is shown that in general the St\"ackel-Killing tensors involved in the Runge-Lenz vector cannot be expressed as a product of Killing-Yano tensors. The only exception is the original Taub-NUT metric.Comment: 14 pages, LaTeX. Final version to appear in J.Phys.A:Math.Ge
    corecore