1,420 research outputs found
The Utilization of Dissolved Free Amino Acids by Estuarine Microorganisms
The importance of bacteria in the cycling of carbon in the Pamlico River estuary was studied by measuring the rates of uptake of organic compounds. Our methods allowed analysis with the Michaelis-Menten kinetics equations, and both the rates of uptake of dissolved free amino acids (DFAA) and glucose as well as the percentage of carbon subsequently respired as CO2 were determined. In addition, the concentrations of the amino acids in the water were determined using ion exchange chromatography. Other tests included measurements of primary productivity and of the effects of the other amino acids in the water upon the uptake of one amino acid. (...
LongâTerm Responses Of The Kuparuk River Ecosystem To Phosphorus Fertilization
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117218/1/ecy2004854939.pd
Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species
Century-scale wood nitrogen isotope trajectories from an oak savanna with variable fire frequencies
Fire frequency exerts a fundamental control on productivity and nutrient cycling in savanna ecosystems. Individual fires often increase short-Term nitrogen (N) availability to plants, but repeated burning causes ecosystem N losses and can ultimately decrease soil organic matter and N availability. However, these effects remain poorly understood due to limited long-Term biogeochemical data. Here, we evaluate how fire frequency and changing vegetation composition influenced wood stable N isotopes (15N) across space and time at one of the longest running prescribed burn experiments in the world (established in 1964). We developed multiple 15N records across a burn frequency gradient from precisely dated Quercus macrocarpa tree rings in an oak savanna at Cedar Creek Ecosystem Science Reserve, Minnesota, USA. Sixteen trees were sampled across four treatment stands that varied with respect to the temporal onset of burning and burn frequency but were consistent in overstory species representation, soil characteristics, and topography. Burn frequency ranged from an unburned control stand to a high-fire-frequency stand that had burned in 4 of every 5 years during the past 55 years. Because N stocks and net N mineralization rates are currently lowest in frequently burned stands, we hypothesized that wood 15N trajectories would decline through time in all burned stands, but at a rate proportional to the fire frequency. We found that wood 15N records within each stand were remarkably coherent in their mean state and trend through time. A gradual decline in wood 15N occurred in the mid-20th century in the no-, low-, and medium-fire stands, whereas there was no trend in the highfire stand. The decline in the three stands did not systematically coincide with the onset of prescribed burning. Thus, we found limited evidence for variation in wood 15N that could be attributed directly to long-Term fire frequency in this prescribed burn experiment in temperate oak savanna. Our wood 15N results may instead reflect decadal-scale changes in vegetation composition and abundance due to early-to mid-20th-century fire suppression
Phenotypic and genotypic characterization of Neisseria gonorrhoeae isolates among individuals at high risk for sexually transmitted diseases in Zurich, Switzerland
Background: While ceftriaxone resistance remains scarce in Switzerland, global Neisseria gonorrhoeae (NG) antimicrobial resistance poses an urgent threat. This study describes clinical characteristics in MSM (men who have sex with men) diagnosed with NG infection and analyses NG resistance by phenotypic and genotypic means.
Methods: Data of MSM enrolled in three clinical cohorts with a positive polymerase chain reaction test (PCR) for NG were analysed between January 2019 and December 2021 and linked with antibiotic susceptibility testing. Bacterial isolates were subjected to whole genome sequencing (WGS).
Results: Of 142 participants, 141 (99%) were MSM and 118 (84%) living with HIV. Participants were treated with ceftriaxone ( N = 79), azithromycin ( N = 2), or a combination of both ( N = 61). No clinical or microbiological failures were observed. From 182 positive PCR samples taken, 23 were available for detailed analysis. Based on minimal inhibitory concentrations (MICs), all isolates were susceptible to ceftriaxone, gentamicin, cefixime, cefpodoxime, ertapenem, zoliflodacin, and spectinomycin. Resistance to azithromycin, tetracyclines and ciprofloxacin was observed in 10 (43%), 23 (100%) and 11 (48%) of the cases, respectively. Analysis of WGS data revealed combinations of resistance determinants that matched with the corresponding phenotypic resistance pattern of each isolate.
Conclusion: Among the MSM diagnosed with NG mainly acquired in Switzerland, ceftriaxone MICs were low for a subset of bacterial isolates studied and no treatment failures were observed. For azithromycin, high occurrences of in vitro resistance were found. Gentamicin, cefixime, cefpodoxime, ertapenem, spectinomycin, and zoliflodacin displayed excellent in vitro activity against the 23 isolates underscoring their potential as alternative agents to ceftriaxone
Evapotranspiration of Residential Lawns Across the United States
Despite interest in the contribution of evapotranspiration (ET) of residential turfgrass lawns to household and municipal water budgets across the United States, the spatial and temporal variability of residential lawn ET across large scales is highly uncertain. We measured instantaneous ET (ETinst) of lawns in 79 residential yards in six metropolitan areas: Baltimore, Boston, Miami, Minneapolis-St. Paul (mesic climates), Los Angeles and Phoenix (arid climates). Each yard had one of four landscape types and management practices: traditional lawn-dominated yards with high or low fertilizer input, yards with water-conserving features, and yards with wildlife-friendly features. We measured ETinst in situ during the growing season using portable chambers and identified environmental and anthropogenic factors controlling ET in residential lawns. For each household, we used ETinst to estimate daily ET of the lawn (ETdaily) and multiplied ETdaily by the lawn area to estimate the total volume of water lost through ET of the lawn (ETvol). ETdaily varied from 0.9 ± 0.4 mm d1 in mesic cities to 2.9 ± 0.7 mm dâ1 in arid cities. Neither ETinst nor ETdaily was significantly influenced by yard landscape types and ETinst patterns indicated that lawns may be largely decoupled from regional rain-driven climate patterns. ETvol ranged from âŒ0 L dâ1 to over 2,000 L dâ1, proportionally increasing with lawn area. Current irrigation and lawn management practices did not necessarily result in different ETinst or ETdaily among traditional, water-conserving, or wildlife-friendly yards, but smaller lawn areas in water-conserving and wildlife-friendly yards resulted in lower ETvol
Processing arctic eddy-flux data using a simple carbon-exchange model embedded in the ensemble Kalman filter
Author Posting. © Ecological Society of America, 2010. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 20 (2010): 1285â1301, doi:10.1890/09-0876.1.Continuous time-series estimates of net ecosystem carbon exchange (NEE) are routinely made using eddy covariance techniques. Identifying and compensating for errors in the NEE time series can be automated using a signal processing filter like the ensemble Kalman filter (EnKF). The EnKF compares each measurement in the time series to a model prediction and updates the NEE estimate by weighting the measurement and model prediction relative to a specified measurement error estimate and an estimate of the model-prediction error that is continuously updated based on model predictions of earlier measurements in the time series. Because of the covariance among model variables, the EnKF can also update estimates of variables for which there is no direct measurement. The resulting estimates evolve through time, enabling the EnKF to be used to estimate dynamic variables like changes in leaf phenology. The evolving estimates can also serve as a means to test the embedded model and reconcile persistent deviations between observations and model predictions.
We embedded a simple arctic NEE model into the EnKF and filtered data from an eddy covariance tower located in tussock tundra on the northern foothills of the Brooks Range in northern Alaska, USA. The model predicts NEE based only on leaf area, irradiance, and temperature and has been well corroborated for all the major vegetation types in the Low Arctic using chamber-based data. This is the first application of the model to eddy covariance data.
We modified the EnKF by adding an adaptive noise estimator that provides a feedback between persistent model data deviations and the noise added to the ensemble of Monte Carlo simulations in the EnKF. We also ran the EnKF with both a specified leaf-area trajectory and with the EnKF sequentially recalibrating leaf-area estimates to compensate for persistent model-data deviations. When used together, adaptive noise estimation and sequential recalibration substantially improved filter performance, but it did not improve performance when used individually.
The EnKF estimates of leaf area followed the expected springtime canopy phenology. However, there were also diel fluctuations in the leaf-area estimates; these are a clear indication of a model deficiency possibly related to vapor pressure effects on canopy conductance.This material is based upon work supported by the U.S.
National Science Foundation under grants OPP-0352897,
DEB-0423385, DEB-0439620, DEB-0444592, and OPP-
0632139
Phase separation in an homogeneous shear flow: Morphology, growth laws and dynamic scaling
We investigate numerically the influence of an homogeneous shear flow on the
spinodal decomposition of a binary mixture by solving the Cahn-Hilliard
equation in a two-dimensional geometry. Several aspects of this much studied
problem are clarified. Our numerical data show unambiguously that, in the shear
flow, the domains have on average an elliptic shape. The time evolution of the
three parameters describing this ellipse are obtained for a wide range of shear
rates. For the lowest shear rates investigated, we find the growth laws for the
two principal axis , , while
the mean orientation of the domains with respect to the flow is inversely
proportional to the strain. This implies that when hydrodynamics is neglected a
shear flow does not stop the domain growth process. We investigate also the
possibility of dynamic scaling, and show that only a non trivial form of
scaling holds, as predicted by a recent analytical approach to the case of a
non-conserved order parameter. We show that a simple physical argument may
account for these results.Comment: Version accepted for publication - Physical Review
First report of the ectomycorrhizal status of boletes on the Northern Yucatan Peninsula, Mexico determined using isotopic methods
Despite their prominent role for tree growth, few studies have examined the occurrence of ectomycorrhizal fungi in lowland, seasonally dry tropical forests (SDTF). Although fruiting bodies of boletes have been observed in a dry tropical forest on the Northern Yucatan Peninsula, Mexico, their occurrence is rare and their mycorrhizal status is uncertain. To determine the trophic status (mycorrhizal vs. saprotrophic) of these boletes, fruiting bodies were collected and isotopically compared to known saprotrophic fungi, foliage, and soil from the same site. Mean ÎŽ15N and ÎŽ13C values differed significantly between boletes and saprotrophic fungi, with boletes 8.0â° enriched and 2.5â° depleted in 15N and 13C, respectively relative to saprotrophic fungi. Foliage was depleted in 13C relative to both boletes and saprotrophic fungi. Foliar ÎŽ15N values, on the other hand, were similar to saprotrophic fungi, yet were considerably lower relative to bolete fruiting bodies. Results from this study provide the first isotopic evidence of ectomycorrhizal fungi in lowland SDTF and emphasize the need for further research to better understand the diversity and ecological importance of ectomycorrhizal fungi in these forested ecosystems
- âŠ