434 research outputs found

    Quantum magnetism with ultracold molecules

    Full text link
    This article gives an introduction to the realization of effective quantum magnetism with ultracold molecules in an optical lattice, reviews experimental and theoretical progress, and highlights future opportunities opened up by ongoing experiments. Ultracold molecules offer capabilities that are otherwise difficult or impossible to achieve in other effective spin systems, such as long-ranged spin-spin interactions with controllable degrees of spatial and spin anisotropy and favorable energy scales. Realizing quantum magnetism with ultracold molecules provides access to rich many-body behaviors, including many exotic phases of matter and interesting excitations and dynamics. Far-from-equilibrium dynamics plays a key role in our exposition, just as it did in recent ultracold molecule experiments realizing effective quantum magnetism. In particular, we show that dynamical probes allow the observation of correlated many-body spin physics, even in polar molecule gases that are not quantum degenerate. After describing how quantum magnetism arises in ultracold molecules and discussing recent observations of quantum magnetism with polar molecules, we survey prospects for the future, ranging from immediate goals to long-term visions.Comment: 21 pages, 6 figures, 1 table. Review articl

    Cooling Fermions in an Optical Lattice by Adiabatic Demagnetization

    Full text link
    The Fermi-Hubbard model describes ultracold fermions in an optical lattice and exhibits antiferromagnetic long-ranged order below the N\'{e}el temperature. However, reaching this temperature in the lab has remained an elusive goal. In other atomic systems, such as trapped ions, low temperatures have been successfully obtained by adiabatic demagnetization, in which a strong effective magnetic field is applied to a spin-polarized system, and the magnetic field is adiabatically reduced to zero. Unfortunately, applying this approach to the Fermi-Hubbard model encounters a fundamental obstacle: the SU(2)SU(2) symmetry introduces many level crossings that prevent the system from reaching the ground state, even in principle. However, by breaking the SU(2)SU(2) symmetry with a spin-dependent tunneling, we show that adiabatic demagnetization can achieve low temperature states. Using density matrix renormalization group (DMRG) calculations in one dimension, we numerically find that demagnetization protocols successfully reach low temperature states of a spin-anisotropic Hubbard model, and we discuss how to optimize this protocol for experimental viability. By subsequently ramping spin-dependent tunnelings to spin-independent tunnelings, we expect that our protocol can be employed to produce low-temperature states of the Fermi-Hubbard Model.Comment: References adde

    Bosonic molecules in a lattice: unusual fluid phase from multichannel interactions

    Full text link
    We show that multichannel interactions significantly alter the phase diagram of ultracold bosonic molecules in an optical lattice. Most prominently, an unusual fluid region intervenes between the conventional superfluid and the Mott insulator. In it, number fluctuations remain but phase coherence is suppressed by a significant factor. This factor can be made arbitrarily large, at least in a two-site configuration. We calculate the phase diagram using complementary methods, including Gutzwiller mean-field and density matrix renormalization group (DMRG) calculations. Although we focus on bosonic molecules without dipolar interactions, we expect multichannel interactions to remain important for dipolar interacting and fermionic molecules.Comment: 6 pages incl. refs, 4 figure

    Explanation of 100-fold reduction of spectral shifts for hydrogen on helium films

    Full text link
    We show that helium film-mediated hydrogen-hydrogen interactions account for a two orders of magnitude discrepancy between previous theory and recent experiments on cold collision shifts in spin-polarized hydrogen adsorbed on a helium film. These attractive interactions also explain the anomalous dependence of the cold collision frequency shifts on the 3^3He covering of the film. Our findings suggest that the gas will become mechanically unstable before reaching the Kosterlitz-Thouless transition unless the experiment is performed in a drastically different regime, for example with a much different helium film geometry.Comment: 4+ pages, 1 figure (3 subfigures), revtex

    Ultracold nonreactive molecules in an optical lattice: connecting chemistry to many-body physics

    Get PDF
    We derive effective lattice models for ultracold bosonic or fermionic nonreactive molecules (NRMs) in an optical lattice, analogous to the Hubbard model that describes ultracold atoms in a lattice. In stark contrast to the Hubbard model, which is commonly assumed to accurately describe NRMs, we find that the single on-site interaction parameter UU is replaced by a multi-channel interaction, whose properties we elucidate. The complex, multi-channel collisional physics is unrelated to dipolar interactions, and so occurs even in the absence of an electric field or for homonuclear molecules. We find a crossover between coherent few-channel models and fully incoherent single-channel models as the lattice depth is increased. We show that the effective model parameters can be determined in lattice modulation experiments, which consequently measure molecular collision dynamics with a vastly sharper energy resolution than experiments in an ultracold gas.Comment: 4 pages+refs, 3 figures; 2.5 pages+1 figure Supplemental Materia

    Local versus global equilibration near the bosonic Mott-superfluid transition

    Full text link
    We study the response of trapped two dimensional cold bosons to time dependent lattices. We find that in lattice ramps from 11 (superfluid, /Ui=3\hbar/U_{\text{i}} = 3ms, /Ji=45\hbar/J_{\text{i}} = 45ms) to 16 recoils (Mott, /Uf=2\hbar/U_{\text{f}} = 2ms, /Jf=130\hbar/J_{\text{f}} = 130ms) the local number fluctuations remains at their equilibrium values if ramps are slower than 3 ms. Global transport, however, is much slower (1s), especially in the presence of Mott shells. This separation of timescales has practical implications for cold atom experiments and cooling protocols.Comment: 4 pages, 4 figs. 6 subfigure

    Microscopic derivation of multi-channel Hubbard models for ultracold nonreactive molecules in an optical lattice

    Get PDF
    Recent experimental advances in the cooling and manipulation of bialkali dimer molecules have enabled the production of gases of ultracold molecules that are not chemically reactive. It has been presumed in the literature that in the absence of an electric field the low-energy scattering of such nonreactive molecules (NRMs) will be similar to atoms, in which a single ss-wave scattering length governs the collisional physics. However, in Ref. [1], it was argued that the short-range collisional physics of NRMs is much more complex than for atoms, and that this leads to a many-body description in terms of a multi-channel Hubbard model. In this work, we show that this multi-channel Hubbard model description of NRMs in an optical lattice is robust against the approximations employed in Ref. [1] to estimate its parameters. We do so via an exact, albeit formal, derivation of a multi-channel resonance model for two NRMs from an ab initio description of the molecules in terms of their constituent atoms. We discuss the regularization of this two-body multi-channel resonance model in the presence of a harmonic trap, and how its solutions form the basis for the many-body model of Ref. [1]. We also generalize the derivation of the effective lattice model to include multiple internal states (e.g., rotational or hyperfine). We end with an outlook to future research.Comment: 19 pages, 4 figure

    Food Insecurity and Eating Disorders: A Review of Emerging Evidence

    Get PDF
    Purpose of Review: This review summarizes emerging evidence for the relationship between food insecurity and eating disorder (ED) pathology, outlines priorities for future research in this area, and comments on considerations for clinical and public health practice. Recent Findings: Among adults, food insecurity is cross-sectionally associated with higher levels of overall ED pathology, binge eating, compensatory behaviors, binge-eating disorder, and bulimia nervosa. Evidence for similar relationships among adolescents has been less robust; however, compared to studies of adults, there have been substantially fewer studies conducted in adolescents to date. Summary: Emerging evidence consistently indicates that food insecurity is cross-sectionally associated with bulimic-spectrum ED pathology among adults. Findings emphasize the need for ED research to include marginalized populations who have historically been overlooked in the ED field. Much more research is needed to better understand the relationship between food insecurity and ED pathology and to determine effective ways to intervene
    corecore