1,074 research outputs found

    Estimating operator norms using covering nets

    Get PDF
    We present several polynomial- and quasipolynomial-time approximation schemes for a large class of generalized operator norms. Special cases include the 2q2\rightarrow q norm of matrices for q>2q>2, the support function of the set of separable quantum states, finding the least noisy output of entanglement-breaking quantum channels, and approximating the injective tensor norm for a map between two Banach spaces whose factorization norm through 1n\ell_1^n is bounded. These reproduce and in some cases improve upon the performance of previous algorithms by Brand\~ao-Christandl-Yard and followup work, which were based on the Sum-of-Squares hierarchy and whose analysis used techniques from quantum information such as the monogamy principle of entanglement. Our algorithms, by contrast, are based on brute force enumeration over carefully chosen covering nets. These have the advantage of using less memory, having much simpler proofs and giving new geometric insights into the problem. Net-based algorithms for similar problems were also presented by Shi-Wu and Barak-Kelner-Steurer, but in each case with a run-time that is exponential in the rank of some matrix. We achieve polynomial or quasipolynomial runtimes by using the much smaller nets that exist in 1\ell_1 spaces. This principle has been used in learning theory, where it is known as Maurey's empirical method.Comment: 24 page

    Quantum de Finetti Theorems under Local Measurements with Applications

    Get PDF
    Quantum de Finetti theorems are a useful tool in the study of correlations in quantum multipartite states. In this paper we prove two new quantum de Finetti theorems, both showing that under tests formed by local measurements one can get a much improved error dependence on the dimension of the subsystems. We also obtain similar results for non-signaling probability distributions. We give the following applications of the results: We prove the optimality of the Chen-Drucker protocol for 3-SAT, under the exponential time hypothesis. We show that the maximum winning probability of free games can be estimated in polynomial time by linear programming. We also show that 3-SAT with m variables can be reduced to obtaining a constant error approximation of the maximum winning probability under entangled strategies of O(m^{1/2})-player one-round non-local games, in which the players communicate O(m^{1/2}) bits all together. We show that the optimization of certain polynomials over the hypersphere can be performed in quasipolynomial time in the number of variables n by considering O(log(n)) rounds of the Sum-of-Squares (Parrilo/Lasserre) hierarchy of semidefinite programs. As an application to entanglement theory, we find a quasipolynomial-time algorithm for deciding multipartite separability. We consider a result due to Aaronson -- showing that given an unknown n qubit state one can perform tomography that works well for most observables by measuring only O(n) independent and identically distributed (i.i.d.) copies of the state -- and relax the assumption of having i.i.d copies of the state to merely the ability to select subsystems at random from a quantum multipartite state. The proofs of the new quantum de Finetti theorems are based on information theory, in particular on the chain rule of mutual information.Comment: 39 pages, no figure. v2: changes to references and other minor improvements. v3: added some explanations, mostly about Theorem 1 and Conjecture 5. STOC version. v4, v5. small improvements and fixe

    Efficient Quantum Pseudorandomness

    Get PDF
    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g. in computation, communication and control. Fully random transformations require exponential time for either classical or quantum systems, but in many case pseudorandom operations can emulate certain properties of truly random ones. Indeed in the classical realm there is by now a well-developed theory of such pseudorandom operations. However the construction of such objects turns out to be much harder in the quantum case. Here we show that random quantum circuits are a powerful source of quantum pseudorandomness. This gives the for the first time a polynomialtime construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography and to understanding self-equilibration of closed quantum dynamics.Comment: 6 pages, 1 figure. Short version of http://arxiv.org/abs/1208.069

    Applications of coherent classical communication and the Schur transform to quantum information theory

    Get PDF
    Quantum mechanics has led not only to new physical theories, but also a new understanding of information and computation. Quantum information began by yielding new methods for achieving classical tasks such as factoring and key distribution but also suggests a completely new set of quantum problems, such as sending quantum information over quantum channels or efficiently performing particular basis changes on a quantum computer. This thesis contributes two new, purely quantum, tools to quantum information theory--coherent classical communication in the first half and an efficient quantum circuit for the Schur transform in the second half.Comment: 176 pages. Chapters 1 and 4 are a slightly older version of quant-ph/0512015. Chapter 2 is quant-ph/0205057 plus unpublished extensions (slightly outdated by quant-ph/0511219) and chapter 3 is quant-ph/0307091, quant-ph/0412126 and change. Chapters 5-8 are based on quant-ph/0407082, but go much furthe

    Symmetric coupling of four spin-1/2 systems

    Full text link
    We address the non-binary coupling of identical angular momenta based upon the representation theory for the symmetric group. A correspondence is pointed out between the complete set of commuting operators and the reference-frame-free subsystems. We provide a detailed analysis of the coupling of three and four spin-1/2 systems and discuss a symmetric coupling of four spin-1/2 systems.Comment: 20 pages, no figure

    Efficient Discrete Approximations of Quantum Gates

    Full text link
    Quantum compiling addresses the problem of approximating an arbitrary quantum gate with a string of gates drawn from a particular finite set. It has been shown that this is possible for almost all choices of base sets and furthermore that the number of gates required for precision epsilon is only polynomial in log 1/epsilon. Here we prove that using certain sets of base gates quantum compiling requires a string length that is linear in log 1/epsilon, a result which matches the lower bound from counting volume up to constant factor.Comment: 7 pages, no figures, v3 revised to correct major error in previous version

    Efficient Quantum Pseudorandomness

    Get PDF
    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions (“circuits”) are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics
    corecore