1,074 research outputs found
Estimating operator norms using covering nets
We present several polynomial- and quasipolynomial-time approximation schemes
for a large class of generalized operator norms. Special cases include the
norm of matrices for , the support function of the set of
separable quantum states, finding the least noisy output of
entanglement-breaking quantum channels, and approximating the injective tensor
norm for a map between two Banach spaces whose factorization norm through
is bounded.
These reproduce and in some cases improve upon the performance of previous
algorithms by Brand\~ao-Christandl-Yard and followup work, which were based on
the Sum-of-Squares hierarchy and whose analysis used techniques from quantum
information such as the monogamy principle of entanglement. Our algorithms, by
contrast, are based on brute force enumeration over carefully chosen covering
nets. These have the advantage of using less memory, having much simpler proofs
and giving new geometric insights into the problem. Net-based algorithms for
similar problems were also presented by Shi-Wu and Barak-Kelner-Steurer, but in
each case with a run-time that is exponential in the rank of some matrix. We
achieve polynomial or quasipolynomial runtimes by using the much smaller nets
that exist in spaces. This principle has been used in learning theory,
where it is known as Maurey's empirical method.Comment: 24 page
Quantum de Finetti Theorems under Local Measurements with Applications
Quantum de Finetti theorems are a useful tool in the study of correlations in
quantum multipartite states. In this paper we prove two new quantum de Finetti
theorems, both showing that under tests formed by local measurements one can
get a much improved error dependence on the dimension of the subsystems. We
also obtain similar results for non-signaling probability distributions. We
give the following applications of the results:
We prove the optimality of the Chen-Drucker protocol for 3-SAT, under the
exponential time hypothesis.
We show that the maximum winning probability of free games can be estimated
in polynomial time by linear programming. We also show that 3-SAT with m
variables can be reduced to obtaining a constant error approximation of the
maximum winning probability under entangled strategies of O(m^{1/2})-player
one-round non-local games, in which the players communicate O(m^{1/2}) bits all
together.
We show that the optimization of certain polynomials over the hypersphere can
be performed in quasipolynomial time in the number of variables n by
considering O(log(n)) rounds of the Sum-of-Squares (Parrilo/Lasserre) hierarchy
of semidefinite programs. As an application to entanglement theory, we find a
quasipolynomial-time algorithm for deciding multipartite separability.
We consider a result due to Aaronson -- showing that given an unknown n qubit
state one can perform tomography that works well for most observables by
measuring only O(n) independent and identically distributed (i.i.d.) copies of
the state -- and relax the assumption of having i.i.d copies of the state to
merely the ability to select subsystems at random from a quantum multipartite
state.
The proofs of the new quantum de Finetti theorems are based on information
theory, in particular on the chain rule of mutual information.Comment: 39 pages, no figure. v2: changes to references and other minor
improvements. v3: added some explanations, mostly about Theorem 1 and
Conjecture 5. STOC version. v4, v5. small improvements and fixe
Efficient Quantum Pseudorandomness
Randomness is both a useful way to model natural systems and a useful tool
for engineered systems, e.g. in computation, communication and control. Fully
random transformations require exponential time for either classical or quantum
systems, but in many case pseudorandom operations can emulate certain
properties of truly random ones. Indeed in the classical realm there is by now
a well-developed theory of such pseudorandom operations. However the
construction of such objects turns out to be much harder in the quantum case.
Here we show that random quantum circuits are a powerful source of quantum
pseudorandomness. This gives the for the first time a polynomialtime
construction of quantum unitary designs, which can replace fully random
operations in most applications, and shows that generic quantum dynamics cannot
be distinguished from truly random processes. We discuss applications of our
result to quantum information science, cryptography and to understanding
self-equilibration of closed quantum dynamics.Comment: 6 pages, 1 figure. Short version of http://arxiv.org/abs/1208.069
Applications of coherent classical communication and the Schur transform to quantum information theory
Quantum mechanics has led not only to new physical theories, but also a new
understanding of information and computation. Quantum information began by
yielding new methods for achieving classical tasks such as factoring and key
distribution but also suggests a completely new set of quantum problems, such
as sending quantum information over quantum channels or efficiently performing
particular basis changes on a quantum computer. This thesis contributes two
new, purely quantum, tools to quantum information theory--coherent classical
communication in the first half and an efficient quantum circuit for the Schur
transform in the second half.Comment: 176 pages. Chapters 1 and 4 are a slightly older version of
quant-ph/0512015. Chapter 2 is quant-ph/0205057 plus unpublished extensions
(slightly outdated by quant-ph/0511219) and chapter 3 is quant-ph/0307091,
quant-ph/0412126 and change. Chapters 5-8 are based on quant-ph/0407082, but
go much furthe
Symmetric coupling of four spin-1/2 systems
We address the non-binary coupling of identical angular momenta based upon
the representation theory for the symmetric group. A correspondence is pointed
out between the complete set of commuting operators and the
reference-frame-free subsystems. We provide a detailed analysis of the coupling
of three and four spin-1/2 systems and discuss a symmetric coupling of four
spin-1/2 systems.Comment: 20 pages, no figure
Efficient Discrete Approximations of Quantum Gates
Quantum compiling addresses the problem of approximating an arbitrary quantum
gate with a string of gates drawn from a particular finite set. It has been
shown that this is possible for almost all choices of base sets and furthermore
that the number of gates required for precision epsilon is only polynomial in
log 1/epsilon. Here we prove that using certain sets of base gates quantum
compiling requires a string length that is linear in log 1/epsilon, a result
which matches the lower bound from counting volume up to constant factor.Comment: 7 pages, no figures, v3 revised to correct major error in previous
version
Efficient Quantum Pseudorandomness
Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions (“circuits”) are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics
- …