1,099 research outputs found
USB environment measurements based on full-scale static engine ground tests
Flow turning parameters, static pressures, surface temperatures, surface fluctuating pressures and acceleration levels were measured in the environment of a full-scale upper surface blowing (USB) propulsive lift test configuration. The test components included a flightworthy CF6-50D engine, nacelle, and USB flap assembly utilized in conjunction with ground verification testing of the USAF YC-14 Advanced Medium STOL Transport propulsion system. Results, based on a preliminary analysis of the data, generally show reasonable agreement with predicted levels based on model data. However, additional detailed analysis is required to confirm the preliminary evaluation, to help delineate certain discrepancies with model data, and to establish a basis for future flight test comparisons
Static noise tests on augmentor wing jet STOL research aircraft (C8A Buffalo)
Results are presented for full scale ground static acoustic tests of over-area conical nozzles and a lobe nozzle installed on the Augmentor Wing Jet STOL Research Aircraft, a modified C8A Buffalo. The noise levels and spectrums of the test nozzles are compared against those of the standard conical nozzle now in use on the aircraft. Acoustic evaluations at 152 m (500 ft), 304 m (1000 ft), and 1216 m (4000 ft) are made at various engine power settings with the emphasis on approach and takeoff power. Appendix A contains the test log and propulsion calculations. Appendix B gives the original test plan, which was closely adhered to during the test. Appendix C describes the acoustic data recording and reduction systems, with calibration details
Design integration and noise studies for jet STOL aircraft. Task 7C: Augmentor wing cruise blowing valveless system. Volume 1: Static testing of augmentor noise and performance
Static performance and acoustic tests were conducted on a two-dimensional one-third-scale augmentor flap model that simulated a cruise blowing augmentor system designed for a scale augmentor flap model that simulated a cruise blowing augmentor, which offers a degree of 150-passenger STOL airplane. The cruise blowing augmentor, which offers a degree of simplicity by requiring no fan air diverter valves, was simulated by fitting existing lobe suppressor nozzles with new nozzle fairings. Flow turning performance of the cruise blowing augmentor was measured through a large range of flap deflection angles. The noise suppression characteristics of a multilayer acoustic lining installed in the augmentor were also measured
Noise and static performance characteristics of a STOL aircraft jet flap
Static noise and performance tests were conducted on a 1/4-scale jet flap model with a multilobe nozzle of array area ratio of 2.7. The model nozzle and flap tested were a two-dimensional section of a distributed blowing system similar to previously investigated augmentor wing systems without the upper shroud and intake door. Noise data were measured with the nozzle alone and also during attached flow conditions with the flap at two turning angles representing takeoff and approach conditions. The noise data are scaled to a 200,000-lb TOGW four-engine airplane and are presented in terms of perceived noise level and one-third octave band sound pressure level. Comparisons are made with the noise levels produced by an augmentor wing airplane fitted with a three-element acoustically lined augmentor flap. The static performance is presented in terms of thrust recovery and effective turning angle
Test of acoustic tone source and propulsion performance of C8A Buffalo suppressor nozzle
Results are presented for a static acoustic and propulsion performance ground test conducted at the Boeing hot nozzle facility on the C8A Buffalo noise suppressor nozzle. Various methods to remove a nozzle-associated 2000-Hz tone are evaluated. Results of testing this rectangular-array lobed nozzle for propulsion performance and acoustic directivity are reported. Recommendations for future nozzle modifications and further testing are included. Appendix A contains the test plan. Appendix B presents the test log. Appendix C contains plots of the one-third octave sound pressure levels recorded during the test. Appendix D describes the acoustic data recording and reduction systems. The performance data is tabulated in Appendix E
Novel Data Acquisition System for Silicon Tracking Detectors
We have developed a novel data acquisition system for measuring tracking
parameters of a silicon detector in a particle beam. The system is based on a
commercial Analog-to-Digital VME module and a PC Linux based Data Acquisition
System. This DAQ is realized with C++ code using object-oriented techniques.
Track parameters for the beam particles were reconstructed using off-line
analysis code and automatic detector position alignment algorithm.
The new DAQ was used to test novel Czochralski type silicon detectors. The
important silicon detector parameters, including signal size distributions and
signal to noise distributions, were successfully extracted from the detector
under study. The efficiency of the detector was measured to be 95 %, the
resolution about 10 micrometers, and the signal to noise ratio about 10.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 6 pages, LaTeX, 5 eps figures. PSN
TUGP00
Differential Roles of Fibroblast Growth Factor Receptors (FGFR) 1, 2 and 3 in the Regulation of S115 Breast Cancer Cell Growth
Fibroblast growth factors (FGFs) regulate the growth and progression of breast cancer. FGF signaling is transduced through FGF receptors 1-4, which have oncogenic or anti-oncogenic roles depending on the ligand and the cellular context. Our aim was to clarify the roles of FGFR1-3 in breast cancer cell growth in vitro and in vivo. Pools of S115 mouse breast cancer cells expressing shRNA against FGFR1, 2 and 3 were created by lentiviral gene transfer, resulting in cells with downregulated expression of FGFR1, FGFR2 or FGFR3 (shR1, shR2 and shR3 cells, respectively) and shLacZ controls. FGFR1-silenced shR1 cells formed small, poorly vascularized tumors in nude mice. Silencing of FGFR2 in shR2 cells was associated with strong upregulation of FGFR1 expression and the formation of large, highly vascularized tumors compared to the control tumors. Silencing FGFR3 did not affect cell survival or tumor growth. Overexpressing FGFR2 in control cells did not affect FGFR1 expression, suggesting that high FGFR1 expression in shR2 cells and tumors was associated with FGFR2 silencing by indirect mechanisms. The expression of FGFR1 was, however, increased by the addition of FGF-8 to starved shLacZ or MCF-7 cells and decreased by the FGFR inhibitor PD173074 in shR2 cells with an elevated FGFR1 level. In conclusion, our results demonstrate that FGFR1 is crucial for S115 breast cancer cell proliferation and tumor growth and angiogenesis, whereas FGFR2 and FGFR3 are less critical for the growth of these cells. The results also suggest that the expression of FGFR1 itself is regulated by FGF-8 and FGF signaling, which may be of importance in breast tumors expressing FGFs at a high level
Measurement of the t(t)over-bar production cross section in the dilepton channel in pp collisions at √s=8 TeV
The top-antitop quark (t (t) over bar) production cross section is measured in proton-proton collisions at root s = 8 TeV with the CMS experiment at the LHC, using a data sample corresponding to an integrated luminosity of 5.3 fb(-1). The measurement is performed by analysing events with a pair of electrons or muons, or one electron and one muon, and at least two jets, one of which is identified as originating from hadronisation of a bottom quark. The measured cross section is 239 +/- 2 (stat.) +/- 11 (syst.) +/- 6 (lum.) pb, for an assumed top-quark mass of 172.5 GeV, in agreement with the prediction of the standard model
A Spatial Survey of Environmental Indicators for Kazakhstan: An Examination of Current Conditions and Future Needs
The Republic of Kazakhstan, located in Central Asia, has experienced many years of environmental degradation, largely as a result of the poor management of its significant natural resources. In this survey, data relating to different environmental factors are critically analysed in order to understand the state of the environment. It was found that: warming trends are seen in sensitive areas (e.g. the steppe and near glaciers); drying trends are seen where there is already water stress (e.g. the Aral Sea); air quality has been declining recently (following improvements on the decadal timescale) in major urban centres, particularly Almaty; water quality appears to be improving in some areas (e.g. important lakes in the Aktobe and Zhambyl regions); and levels of exposure to radioactivity are below internationally recommended levels (where data have been found). More generally, there is an issue with data availability and quality, which requires attention if Kazakhstan is going to make the best use of its increasing investment in environmental actions. Current policies are reviewed and recommendations are made for future interventions
- …