705 research outputs found
Landau-Zener-Stuckelberg-Majorana interference in a 3D transmon driven by a chirped microwave
By driving a 3D transmon with microwave fields, we generate an effective
avoided energy-level crossing. Then we chirp microwave frequency, which is
equivalent to driving the system through the avoided energy-level crossing by
sweeping the avoided crossing. A double-passage chirp produces
Landau-Zener-St\"uckelberg-Majorana interference that agree well with the
numerical results. Our method is fully applicable to other quantum systems that
contain no intrinsic avoided level crossing, providing an alternative approach
for quantum control and quantum simulation
Near-field calculations for a rigid spheroid with an arbitrary incident acoustic field
A general spheroidal coordinate separation-of-variables solution is developed for the determination of the acoustic pressure distribution near the surface of a rigid spheroid for a monofrequency incident acoustic field of arbitrary character. Calculations are presented, for both the prolate and oblate geometries, demonstrating the effects of incident field orientation and character (plane-wave, spherical wave, cylindrical wave, and focused beam) on the resultant acoustic pressure distribution
A Cytosolic Iron Chaperone that Delivers Iron to Ferritin
Ferritins are the main iron storage proteins found in animals, plants and bacteria. The capacity to store iron in ferritin is essential for life in mammals, but the mechanism by which cytosolic iron is delivered to ferritin is unknown. Human ferritins expressed in yeast contain little iron. The human Poly r(C)-Binding Protein 1 (PCBP1) increased the amount of iron loaded into ferritin when expressed in yeast. PCBP1 bound to ferritin in vivo, and bound iron and facilitated iron loading into ferritin in vitro. Depletion of PCBP1 in human cells inhibited ferritin iron loading and increased cytosolic iron pools. Thus, PCBP1 can function as a cytosolic iron chaperone in the delivery of iron to ferritin
- …