19 research outputs found
Mechanisms of carbon dioxide detection in the earthworm Dendrobaena veneta
IntroductionCarbon dioxide (CO2) is a critical biological signal that is noxious to many animals at high concentrations. The earthworm Dendrobaena veneta lives in subterranean burrows containing high levels of CO2 and respires through its skin. Despite the ecological and agricultural importance of earthworms, relatively little is known about how they make decisions in their environment, including their response to elevated levels of CO2.MethodsTo examine CO2 detection in this species, we designed the exudate assay, in which we placed an earthworm in a sealed container, exposed it to varying concentrations of CO2 for one minute, and recorded the amount of exudate secreted. Because earthworms excrete exudate in response to noxious stimuli, we hypothesized that the amount of exudate produced was proportional to the amount of irritation. We repeated these experiments after treatment with several blockers for molecules with potential involvement in CO2 detection, including carbonic anhydrases, guanylate cyclase, TRPA1, ASICs, and OTOP channels. We also confirmed the presence of homologous transcripts for each of these gene families in an epithelial transcriptome for D. veneta. Additionally, since organisms often detect CO2 levels indirectly by monitoring the conversion to carbonic acid (a weak acid), we used the exudate assay to evaluate aversion to additional weak acids (formic acid, acetic acid, and propionic acid).ResultsEarthworms excreted significantly more exudate in response to CO2 in a dosage-dependent manner, and this response was muted by the general carbonic anhydrase inhibitor acetazolamide, the carbonic anhydrase IX/XII inhibitor indisulam, the calcium channel blocker ruthenium red, the sodium channel blocker amiloride, and the acid-sensing ion channel blocker diminazene aceturate.DiscussionThese data provide evidence of the role of carbonic anhydrase and epithelial sodium channels in earthworm CO2 detection, establish that, similar to other subterranean-dwelling animals, earthworms are extremely tolerant of CO2, and contribute to our understanding of the mechanisms used by earthworms to detect and react to weak acids in their environment
Design of LVDC bidirectional hybrid circuit breaker
One of the most challenging hindrances to the spread use of the DC grids is their protection devices. Due to the absence of zero crossing, when a fault occurs, arc extinction becomes an issue for the traditional mechanical circuit breakers. Thanks to the recent advances in solid-state circuit breakers, this problem is solved because of the absence of mechanical contacts in their topology. However, these breakers cause not negligible conduction losses. This paper illustrates a new low-voltage bidirectional hybrid circuit breaker able to interrupt short-circuit current in few milliseconds. It provides a low-loss path for the current during the normal conduction and a fast current interruption with a limited arc level in case of fault occurrence. The working principle of the device is explained, and its functionality is proven through simulation results
Investigations on the role of insulin and scorpion antivenom in scorpion envenoming syndrome
Acute myocardiopathy in alloxan treated experimental dogs and rabbits was induced by subcutaneous (SQ) injection of scorpion venom from Mesobuthus tamulus concanesis, Pocock. Envenoming resulted in an initial transient hypertension (180-320 mm Hg.) followed by hypotension. Simultaneous administration of venom and species-specific scorpion antivenom (SAV) prevented hypertension and hypotension. Hypotension did not occur when SAV was given 60 min after envenoming. Blood glucose, triglycerides, cholesterol, amylase, insulin, glucagon, cortisol, hematocrit, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), platelet count, red blood cell (RBC) count, hemoglobin (Hb), 2,3-diphosphoglycerate (2,3-DPG), and glutathione levels were increased 60 and 90 min after envenoming. Total white blood cell (WBC) count was reduced 60 min and increased 90 min after envenoming. Simultaneous administration of venom and SAV did not alter Hb, MCHC, and packed cell volume (PCV) levels, or ECG, and cardiovascular, biochemical, metabolic, and hormonal changes. Hematological parameters were reversed when SAV was given 30 and 60 min after envenoming. PCV, Hb, and MCHC values returned to normal 120 min after SAV. Alloxan-treated dogs showed increased blood glucose, cholesterol, glucagon, cortisol levels; reduced glycogen content of liver, cardiac and skeletal muscles; and reduced insulin levels and insulin/ glucagon ratio (I/G ratio). Envenoming in the alloxan pre-treated dogs further increased these levels and reduced tissue glycogen content, insulin levels, and I/G ratio. Administration of 4 U of insulin to alloxan pre-treated envenomed rabbits caused a biochemical and clinical improvement and increased glycogen content of all tissues in comparison with the values from those administered with SAV to alloxan pre-treated envenomed animals. SAV administration to envenomed alloxan pre-treated rabbits did not cause clinical or biochemical improvement. Severe scorpion envenoming causes an autonomic storm with a massive release of catecholamines and other counter-regulatory hormones; changes in insulin secretion resulting in fuel energy deficits producing multi-system-organ-failure (MSOF); and death. Administration of either insulin or SAV (through the release of insulin) appears to be the physiological basis for the control of the metabolic support to control the adverse effects triggered by counter-regulatory hormones
Speciation of As()/As(V) and Total Inorganic Arsenic in Biological Fluids Using New Mode of Liquid-Phase Microextraction and Electrothermal Atomic Absorption Spectrometry
In this paper, a new extraction method based on countercurrent liquid–liquid microextraction (CLLME) has been developed for the extraction and preconcentration of inorganic arsenic (iAs) in plasma and urine samples prior to their analysis by electrothermal atomic absorption spectrometry (ETAAS). In this method, firstly, 5 ml of water is added to the extraction vessel. Then 30.0 μl of the extracting solvent is added to it in order for the extracting solvent to be placed in the narrow-necked vessel. In total, 10 ml of a standard solution or a pretreated real sample is added to the sample container and it is connected to the extraction vessel via a connector. While opening the embedded valve at the bottom of the sample container and the one in the extraction vessel, the sample solution flows into the extracting solvent with the same flow rate, leading to the successful extraction of metal ligand into the extracting organic solvent. Under the optimum conditions, calibration curves are linear in the range of 0.1–50 μg l−1, and limit of detections (LODs) are in the range of 0.03–0.05 μg l−1. The enhancement factor and enrichment factor were in the range of 220–240 and 198–212, respectively. Repeatability (intra-day) and reproducibility (inter-day) of method based on seven replicate measurements of 5.0 μg l−1 of arsenic were in the range of 2.3–3.5% and 4.0–5.7%, respectively. The applicability of the proposed CLLME and ETAAS methods was demonstrated by analyzing the iAs in spiked urine and plasma samples. The obtained recoveries of the arsenic in the range of 92–107% indicated the excellent capability of the developed method for speciation of arsenic from plasma and urine sample
Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis
Candida albicans is a ubiquitous opportunistic pathogen that is the most prevalent cause of hospital-acquired fungal infections. In mammalian hosts, C. albicans is engulfed by phagocytes that attack the pathogen with DNA-damaging reactive oxygen species (ROS). Acetylation of histone H3 lysine 56 (H3K56) by the fungal-specific histone acetyltransferase Rtt109 is important for yeast model organisms to survive DNA damage and maintain genome integrity. To assess the importance of Rtt109 for C. albicans pathogenicity, we deleted the predicted homolog of Rtt109 in the clinical C. albicans isolate, SC5314. C. albicans rtt109−/− mutant cells lack acetylated H3K56 (H3K56ac) and are hypersensitive to genotoxic agents. Additionally, rtt109−/− mutant cells constitutively display increased H2A S129 phosphorylation and elevated DNA repair gene expression, consistent with endogenous DNA damage. Importantly, C. albicans rtt109−/− cells are significantly less pathogenic in mice and more susceptible to killing by macrophages in vitro than are wild-type cells. Via pharmacological inhibition of the host NADPH oxidase enzyme, we show that the increased sensitivity of rtt109−/− cells to macrophages depends on the host’s ability to generate ROS, providing a mechanistic link between the drug sensitivity, gene expression, and pathogenesis phenotypes. We conclude that Rtt109 is particularly important for fungal pathogenicity, suggesting a unique target for therapeutic antifungal compounds