4 research outputs found

    A microarray study of post-mortem mRNA degradation in mouse brain tissue

    No full text
    Background: Although there is evidence that post-mortem interval (PMI) is not a major contributor to reduced overall RNA integrity, it may differentially affect a subgroup of gene transcripts that are susceptible to PMI-related degradation. This would particularly have ramifications for microarray studies that include a broad spectrum of genes. Method: Brain tissue was removed from adult mice at 0, 6, 12, 18, 24,36 and 48 h post-mortem. RNA transcript abundance was measured by hybridising RNA from the zero time point with test RNA from each PMI time point, and differential gene expression was assessed using cDNA microarrays. Sequence and ontological analyses were performed on the group of RNA transcripts showing greater than two-fold reduction. Results: Increasing PMI was associated with decreased tissue pH and increased RNA degradation as indexed by 28S/18S ribosomal RNA ratio. Approximately 12% of mRNAs detected on the arrays displayed more than a two-fold decrease in abundance by 48 It post-mortem. An analysis of nucleotide composition provided evidence that transcripts with the AUUUA motif in the 3' untranslated region (3'UTR) were more susceptible to PMI-related RNA degradation, compared to transcripts not carrying the 3'UTR AUUUA motif. Consistent with this finding, ontological analysis showed transcription factors and elements to be over-represented in the group of transcripts susceptible to degradation. Conclusion: A subgroup of mammalian mRNA transcripts are particularly susceptible to PMI-related degradation, and as a group, they are more likely to carry the YUTR AUUUA motif. PMI should be controlled for in human and animal model post-mortem brain studies, particularly those including a broad spectrum of mRNA transcripts. (c) 2005 Elsevier B.V. All rights reserved

    Antipsychotic drugs upregulate lipogenic gene expression by disrupting intracellular trafficking of lipoprotein-derived cholesterol

    No full text
    Antipsychotic drugs (APDs) have been reported to induce lipogenic genes. This has been proposed to contribute to their efficacy in treating schizophrenia and other psychiatric disorders, as well as the metabolic side effects often associated with these drugs. The precise mechanism for the lipogenic effects of APDs is unknown, but is believed to involve increased activation of the lipogenic transcription factors, such as sterol regulatory element binding proteins (SREBPs). In a series of experiments in a model cell line, we found that a panel of typical and atypical APDs inhibited transport of lipoprotein-derived cholesterol to the endoplasmic reticulum (ER), which houses the cholesterol homeostatic machinery. APDs belong to the class of cationic amphiphiles and as has been shown for other amphiphiles, caused lipoprotein-derived cholesterol to accumulate intracellularly, preventing it from being esterified in the ER and suppressing SREBP activation. APDs did not activate the liver X receptor, another transcription factor involved in lipogenesis. However, these drugs markedly reduced cholesterol synthesis. This paradoxical result indicates that the upregulation of SREBP-target genes by APDs may not translate to increased cellular cholesterol levels. In conclusion, we have determined that APDs disrupt intracellular trafficking and synthesis of cholesterol, which may have important clinical ramifications. © 2010 Macmillan Publishers Limited. All rights reserved

    Sonstige unmittelbare Eigenschaften der Elektronenhülle

    No full text
    corecore