5,493 research outputs found
Estimation of Risk-Neutral Density Surfaces
Option price data is often used to infer risk-neutral densities for future prices of an underlying asset. Given the prices of a set of options on the same underlying asset with different strikes and maturities, we propose a nonparametric approach for estimating risk-neutral densities associated with several maturities. Our method uses bicubic splines in order to achieve the desired smoothness for the estimation and an optimization model to choose the spline functions that best fit the price data. Semidefinite programming is employed to guarantee the nonnegativity of the densities. We illustrate the process using synthetic option price data generated using log-normal and absolute diffusion processes as well as actual price data for options on the S&P500 index. We also used the risk-neutral densities that we computed to price exotic options and observed that this approach generates prices that closely approximate the market prices of these options.
A Multi-Membership Catalogue for 1876 Open Clusters using UCAC4 data
The main objective of this work is to determine the cluster members of 1876
open clusters, using positions and proper motions of the astrometric catalogue
UCAC4. For this purpose we apply three different methods, all them based on a
Bayesian approach, but with different formulations: a purely parametric method,
another completely non-parametric algorithm, and a third, recently developed by
Sampedro & Alfaro, using both formulations at different steps of the whole
process. The first and second statistical moments of the members phase-space
subspace, obtained after applying the three methods, are compared for every
cluster. Although, on average, the three methods yield similar results,
specific differences between them, as well as for some particular clusters, are
also present. The comparison with other published catalogues shows good
agreement. We have also estimated for the first time the mean proper motion for
a sample of 18 clusters. The results are organized in a single catalogue formed
by two main files, one with the most relevant information for each cluster,
partially including that in UCAC4, and the other showing the individual
membership probabilities for each star in the cluster area. The final
catalogue, with an interface design that enables an easy interaction with the
user, is available in electronic format at SSG-IAA
(http://ssg.iaa.es/en/content/sampedro-cluster-catalog) website.Comment: Accepted for publication in MNRAS. 9 pages, 3 figures, 6 table
Some boundary effects in quantum field theory
We have constructed a quantum field theory in a finite box, with periodic
boundary conditions, using the hypothesis that particles living in a finite box
are created and/or annihilated by the creation and/or annihilation operators,
respectively, of a quantum harmonic oscillator on a circle. An expression for
the effective coupling constant is obtained showing explicitly its dependence
on the dimension of the box.Comment: 12 pages, Late
Generalized Rate-Code Model for Neuron Ensembles with Finite Populations
We have proposed a generalized Langevin-type rate-code model subjected to
multiplicative noise, in order to study stationary and dynamical properties of
an ensemble containing {\it finite} neurons. Calculations using the
Fokker-Planck equation (FPE) have shown that owing to the multiplicative noise,
our rate model yields various kinds of stationary non-Gaussian distributions
such as gamma, inverse-Gaussian-like and log-normal-like distributions, which
have been experimentally observed. Dynamical properties of the rate model have
been studied with the use of the augmented moment method (AMM), which was
previously proposed by the author with a macroscopic point of view for
finite-unit stochastic systems. In the AMM, original -dimensional stochastic
differential equations (DEs) are transformed into three-dimensional
deterministic DEs for means and fluctuations of local and global variables.
Dynamical responses of the neuron ensemble to pulse and sinusoidal inputs
calculated by the AMM are in good agreement with those obtained by direct
simulation. The synchronization in the neuronal ensemble is discussed.
Variabilities of the firing rate and of the interspike interval (ISI) are shown
to increase with increasing the magnitude of multiplicative noise, which may be
a conceivable origin of the observed large variability in cortical neurons.Comment: 19 pages, 9 figures, accepted in Phys. Rev. E after minor
modification
Molecules in external fields: a semiclassical analysis
We undertake a semiclassical analysis of the spectral properties (modulations
of photoabsorption spectra, energy level statistics) of a simple Rydberg
molecule in static fields within the framework of Closed-Orbit/Periodic-Orbit
theories. We conclude that in addition to the usual classically allowed orbits
one must consider classically forbidden diffractive paths. Further, the
molecule brings in a new type of 'inelastic' diffractive trajectory, different
from the usual 'elastic' diffractive orbits encountered in previous studies of
atomic and analogous systems such as billiards with point-scatterers. The
relative importance of inelastic versus elastic diffraction is quantified by
merging the usual Closed Orbit theory framework with molecular quantum defect
theory.Comment: 4 pages, 3 figure
Molecular Line Profile Fitting with Analytic Radiative Transfer Models
We present a study of analytic models of starless cores whose line profiles
have ``infall asymmetry,'' or blue-skewed shapes indicative of contracting
motions. We compare the ability of two types of analytical radiative transfer
models to reproduce the line profiles and infall speeds of centrally condensed
starless cores whose infall speeds are spatially constant and range between 0
and 0.2 km s-1. The model line profiles of HCO+ (J=1-0) and HCO+ (J=3-2) are
produced by a self-consistent Monte Carlo radiative transfer code. The analytic
models assume that the excitation temperature in the front of the cloud is
either constant (``two-layer'' model) or increases inward as a linear function
of optical depth (``hill'' model). Each analytic model is matched to the line
profile by rapid least-squares fitting.
The blue-asymmetric line profiles with two peaks, or with a blue shifted peak
and a red shifted shoulder, can be well fit by the ``HILL5'' model (a five
parameter version of the hill model), with an RMS error of 0.02 km s-1. A peak
signal to noise ratio of at least 30 in the molecular line observations is
required for performing these analytic radiative transfer fits to the line
profiles.Comment: 48 pages, 20 figures, accepted for publication in Ap
- …