90 research outputs found
The Effect of 45{\deg} Grain Boundaries and associated Fe particles on Jc and resistivity in Ba(Fe0.9Co0.1)2As2 Thin Films
The anisotropy of the critical current density Jc depends in general on both
the properties of the flux lines (such as line tension, coherence length and
penetration depth) and the properties of the defects (such as density, shape,
orientation etc.). Whereas the Jc anisotropy in microstructurally clean films
can be scaled to an effective magnetic field containing the Ginzburg-Landau
anisotropy term, it is in general not possible (or only in a limited field
range) for samples containing extended defects. Here, the Jc anisotropy of a
Co-doped BaFe2As2 sample with 45{\deg} [001] tilt grain boundaries (GBs), i.e.
grain boundaries created by 45{\deg} in-plane rotated grains, as well as
extended Fe particles is investigated. This microstructure leads to c-axis
correlated pinning, both due to the GBs and the Fe particles and manifests in a
c-axis peak in the Jc anisotropy at low magnetic fields and a deviation from
the anisotropic Ginzburg-Landau scaling at higher fields. Strong pinning at
ellipsoidal extended defects, i.e. the Fe particles, is discussed, and the full
Jc anisotropy is fitted successfully with the vortex path model. The results
are compared to a sample without GBs and Fe particles. 45{\deg} GBs seem to be
good pinning centers rather than detrimental to current flow.Comment: 8 pages, 7 figures, CEC-ICMC 2013 proceeding, accepted for
publication in Advances in Cryogenic Engineering (Materials
Epitaxial LaFeAsOF thin films grown by pulsed laser deposition
Superconducting and epitaxially grown LaFeAsOF thin films were successfully
prepared on (001)-oriented LaAlO3 substrates using pulsed laser deposition. The
prepared thin films show exclusively a single in-plane orientation with
epitaxial relation (001)[100] parallel to (001)[100] and a FWHM value of 1deg.
Furthermore, resistive measurement of the superconducting transition
temperature revealed a Tc90 of 25K with a high residual resistive ratio of 6.8.
The applied preparation technique, standard thin film pulsed laser deposition
at room temperature in combination with a subsequent post annealing process, is
suitable for fabrication of high quality LaFeAsO1-xFx thin films. A high upper
critical field of 76.2 T was evaluated for magnetic fields applied
perpendicular to the c-axis and the anisotropy was calculated to be 3.3
assuming single band superconductivity.Comment: 6 pages, 4 Figure
Recommended from our members
Investigation of the strain-sensitive superconducting transition of BaFe1.8Co0.2As2 thin films utilizing piezoelectric substrates
The preparation of biaxially textured BaFe1.8Co0.2As2 thin films has been optimized on MgO single crystals and transfered to piezoelectric (001) Pb(Mg1/3Nb2/3)0.72Ti0.28O3 substrates. By utilizing the inverse piezoelectric effect the lattice parameter of these substrates can be controlled applying an electric field, leading to a induction of biaxial strain into the superconducting layer. High electric fields were used to achieve a total strain of up to 0.05% at low temperatures. A sharpening of the resistive transition and a shift of about 0.6 K to higher temperatures was found at a compressive strain of 0.035%
Recommended from our members
Pulsed laser deposition of thick BaHfO3-doped YBa 2Cu307-δ films on highly alloyed textured Ni-W tapes
YBa2Cu3O7-δ (YBCO) films with a thickness of up to 3 μm containing nano-sized BaHfO3 (BHO) have been grown on Y2O3/Y-stabilized ZrO2/CeO 2 buffered Ni-9at% W tapes by pulsed laser deposition (PLD). Structural characterization by means of X-ray diffraction confirmed that the YBCO layer grew epitaxial. A superconducting transition temperature T c of about 89 K with a transition width of 1 K was determined, decreasing with increasing BHO content. Critical current density in self-field and at 0.3 T increased with increasing dopant level
Recommended from our members
Tuning functional properties by plastic deformation
It is well known that a variation of lattice constants can strongly influence the functional properties of materials. Lattice constants can be influenced by external forces; however, most experiments are limited to hydrostatic pressure or biaxial stress. Here, we present an experimental approach that imposes a large uniaxial strain on epitaxially grown films in order to tune their functional properties. A substrate made of a ductile metal alloy covered with a biaxially oriented MgO layer is used as a template for growth of epitaxial films. By applying an external plastic strain, we break the symmetry within the substrate plane compared to the as-deposited state. The consequences of 2% plastic strain are examined for an epitaxial hard magnetic Nd2Fe14B film and are found to result in an elliptical distortion of the in-plane anisotropy below the spin-reorientation temperature. Our approach is a versatile method to study the influence of large plastic strain on various materials, as the MgO(001) layer used is a common substrate for epitaxial growth
- …