147 research outputs found

    Does post-disturbance salvage logging affect the provision of ecosystem services? A systematic review protocol

    Get PDF
    Background. Forest fires, insect outbreaks, and windstorms are common forest disturbances that are expected to increase in importance in coming decades. Post-disturbance management often involves salvage logging, i.e. the felling and removal of the affected trees. However, harvesting these biological legacies may represent a second disturbance whose effects on ecosystem processes add on those of the initial disturbance. Many of the potentially affected processes, such as soil erosion and stream water quality, represent regulating and supporting ecosystem services important for human society. In the last 15 years, much empirical evidence has been gathered on the ecological consequences of this management practice, and it has now become necessary to synthesise this evidence in meaningful ways for managers and decision-makers.Methods. With this systematic review we aim to synthesise the literature on the effects of salvage logging on ecosystem services and determine the effects of major effect modifiers such as disturbance type and intensity, the timing and method of logging, and the type of forest. We will conduct searches of the primary scientific literature, which will be selected and categorised according to its relevance to the topic and its quality. Each relevant article will be read in full to obtain the necessary data for meta-analysis and to identify its main conclusions. Mixed-effects models will be performed to assess the effects of the identified effect modifiers on the effect sizes of the salvage intervention on ecosystem services and to account for random effects arising from studies being performed in the same area. Sensitivity analyses will test the potential effects of study quality, and publication bias will be assessed with the trim and fill method. We will present the results as a narrative review and a meta-analysis

    Simulating binary neutron stars: dynamics and gravitational waves

    Full text link
    We model two mergers of orbiting binary neutron stars, the first forming a black hole and the second a differentially rotating neutron star. We extract gravitational waveforms in the wave zone. Comparisons to a post-Newtonian analysis allow us to compute the orbital kinematics, including trajectories and orbital eccentricities. We verify our code by evolving single stars and extracting radial perturbative modes, which compare very well to results from perturbation theory. The Einstein equations are solved in a first order reduction of the generalized harmonic formulation, and the fluid equations are solved using a modified convex essentially non-oscillatory method. All calculations are done in three spatial dimensions without symmetry assumptions. We use the \had computational infrastructure for distributed adaptive mesh refinement.Comment: 14 pages, 16 figures. Added one figure from previous version; corrected typo

    Boundary conditions for hyperbolic formulations of the Einstein equations

    Get PDF
    In regards to the initial-boundary value problem of the Einstein equations, we argue that the projection of the Einstein equations along the normal to the boundary yields necessary and appropriate boundary conditions for a wide class of equivalent formulations. We explicitly show that this is so for the Einstein-Christoffel formulation of the Einstein equations in the case of spherical symmetry.Comment: 15 pages; text added and typesetting errors corrected; to appear in Classical and Quantum Gravit

    High-powered Gravitational News

    Get PDF
    We describe the computation of the Bondi news for gravitational radiation. We have implemented a computer code for this problem. We discuss the theory behind it as well as the results of validation tests. Our approach uses the compactified null cone formalism, with the computational domain extending to future null infinity and with a worldtube as inner boundary. We calculate the appropriate full Einstein equations in computational eth form in (a) the interior of the computational domain and (b) on the inner boundary. At future null infinity, we transform the computed data into standard Bondi coordinates and so are able to express the news in terms of its standard N+N_{+} and N×N_{\times} polarization components. The resulting code is stable and second-order convergent. It runs successfully even in the highly nonlinear case, and has been tested with the news as high as 400, which represents a gravitational radiation power of about 1013M⊙/sec10^{13}M_{\odot}/sec.Comment: 24 pages, 4 figures. To appear in Phys. Rev.

    Improved Laboratory Transition Probabilities for Neutral Chromium and Re-determination of the Chromium Abundance for the Sun and Three Stars

    Full text link
    Branching fraction measurements from Fourier transform spectra in conjunction with published radiative lifetimes are used to determine transition probabilities for 263 lines of neutral chromium. These laboratory values are employed to derive a new photospheric abundance for the Sun: log Ï”\epsilon(Cr I)⊙_{\odot} = 5.64±\pm0.01 (σ=0.07\sigma = 0.07). These Cr I solar abundances do not exhibit any trends with line strength nor with excitation energy and there were no obvious indications of departures from LTE. In addition, oscillator strengths for singly-ionized chromium recently reported by the FERRUM Project are used to determine: log Ï”\epsilon(Cr II)⊙_{\odot} = 5.77±\pm0.03 (σ=0.13\sigma = 0.13). Transition probability data are also applied to the spectra of three stars: HD 75732 (metal-rich dwarf), HD 140283 (metal-poor subgiant), and CS 22892-052 (metal-poor giant). In all of the selected stars, Cr I is found to be underabundant with respect to Cr II. The possible causes for this abundance discrepancy and apparent ionization imbalance are discussed.Comment: 44 pages, 6 figure

    Hydrodynamical assessment of 200 AGeV collisions

    Full text link
    We are analyzing the hydrodynamics of 200 A GeV S+S collisions using a new approach which tries to quantify the uncertainties arising from the specific implementation of the hydrodynamical model. Based on a previous phenomenological analysis we use the global hydrodynamics model to show that the amount of initial flow, or initial energy density, cannot be determined from the hadronic momentum spectra. We additionally find that almost always a sizeable transverse flow deve- lops, which causes the system to freeze out, thereby limiting the flow velocity in itself. This freeze-out dominance in turn makes a distinction between a plasma and a hadron resonance gas equation of state very difficult, whereas a pure pion gas can easily be ruled out from present data. To complete the picture we also analyze particle multiplicity data, which suggest that chemical equilibrium is not reached with respect to the strange particles. However, the over- population of pions seems to be at most moderate, with a pion chemical potential far away from the Bose divergence.Comment: 19 pages, 11 figs in separate uuencoded file, for LateX, epsf.tex, dvips, TPR-94-5 and BNL-(no number yet

    Spin observables of the reactions NN -> DeltaN and pd -> Delta (pp)(1S0) in collinear kinematics

    Full text link
    A general formalism for double and triple spin-correlations of the reaction NN -> DeltaN is developed for the case of collinear kinematics. A complete polarization experiment allowing to reconstruct all of the four amplitudes describing this process is suggested. Furthermore, the spin observables of the inelastic charge-exchange reaction pd -> Delta^0(pp)(1S0) are analyzed in collinear kinematics within the single pN scattering mechanism involving the subprocess pn -> Delta^0p. The full set of spin observables related to the polarization of one or two initial particles and one final particle is obtained in terms of three invariant amplitudes of the reaction pd -> Delta (pp)(1S0) and the transition form factor d->(pp)(1S0). A complete polarization experiment for the reaction pd -> Delta^0(pp)(1S0) is suggested which allows one to determine three independent combinations of the four amplitudes of the elementary subprocess NN -> DeltaN.Comment: 12 pages, 1 figur

    Numerical Relativity: A review

    Full text link
    Computer simulations are enabling researchers to investigate systems which are extremely difficult to handle analytically. In the particular case of General Relativity, numerical models have proved extremely valuable for investigations of strong field scenarios and been crucial to reveal unexpected phenomena. Considerable efforts are being spent to simulate astrophysically relevant simulations, understand different aspects of the theory and even provide insights in the search for a quantum theory of gravity. In the present article I review the present status of the field of Numerical Relativity, describe the techniques most commonly used and discuss open problems and (some) future prospects.Comment: 2 References added; 1 corrected. 67 pages. To appear in Classical and Quantum Gravity. (uses iopart.cls

    Measurement of the analyzing power Ay0 for the reaction H(p⃗,d)π+ between 1000 and 1300 MeV

    Get PDF
    The analyzing power Ay0 of the reaction H(p⃗,d)π+ has been measured at a fixed value of the Mandelstam variable ud=-0.17GeV2 for nine proton energies between 1000 and 1300 MeV. The experiment was performed at SATURNE with the SPES1 spectrometer. The data exhibit structure around √s≃2.37GeV. The origin of this structure could be related to a resonancelike behavior of the 1S0P or 1G4F partial amplitudes
    • 

    corecore