3,408 research outputs found
Simulation of a Heisenberg XY- chain and realization of a perfect state transfer algorithm using liquid nuclear magnetic resonance
The three- spin chain with Heisenberg XY- interaction is simulated in a
three- qubit nuclear magnetic resonance (NMR) quantum computer. The evolution
caused by the XY- interaction is decomposed into a series of single- spin
rotations and the - coupling evolutions between the neighboring spins. The
perfect state transfer (PST) algorithm proposed by M. Christandl et al [Phys.
Rev. Lett, 92, 187902(2004)] is realized in the XY- chain
The Integrated Sachs-Wolfe Effect in Time Varying Vacuum Model
The integrated Sachs-Wolfe (ISW) effect is an important implication for dark
energy. In this paper, we have calculated the power spectrum of the ISW effect
in the time varying vacuum cosmological model, where the model parameter
is obtained by the observational constraint of the growth rate.
It's found that the source of the ISW effect is not only affected by the
different evolutions of the Hubble function and the dimensionless matter
density , but also by the different growth function , all
of which are changed due to the presence of matter production term in the time
varying vacuum model. However, the difference of the ISW effect in
model and model is lessened to
a certain extent due to the integration from the time of last scattering to the
present. It's implied that the observations of the galaxies with high redshift
are required to distinguish the two models
Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes
Aims/hypothesis: This study aimed to elucidate the mechanism of increased proliferation of alpha cells in recent-onset type 1 diabetes. Pancreatic beta cells express GAD and produce γ-aminobutyric acid (GABA), which inhibits alpha cell secretion of glucagon. We explored the roles of GABA in alpha cell proliferation in conditions corresponding to type 1 diabetes in a mouse model and in vitro. Methods: Type 1 diabetes was induced by injecting the mice with streptozotocin (STZ). Some of the STZ-injected mice were treated with GABA (10 mg/kg daily) for 12 days. Isolated pancreatic islets were treated with STZ or STZ together with GABA for 2 days. The effects of GABA treatment on STZ-induced alpha cell proliferation in vivo and in vitro were assessed. The effect of muscimol, a GABA receptor agonist, on αTC1-6 cell proliferation was also examined. Results: STZ injection substantially decreased levels of GAD, GABA and insulin in pancreatic beta cells 12 h after injection; this was followed by an upsurge of phosphorylated mechanistic target of rapamycin (p-mTOR) in the alpha cells at day 1, and a significant increase in alpha cell mass at day 3. Treating STZ-injected mice with GABA largely restored the immunodetectable levels of insulin and GAD in the beta cells and significantly decreased the number of aldehyde dehydrogenase 1 family, member A3 (ALDH1a3)-positive cells, alpha cell mass and hyperglucagonaemia. STZ treatment also increased alpha cell proliferation in isolated islets, which was reversed by co-treatment with GABA. Muscimol, together with insulin, significantly lowered the level of cytosolic Ca2+ and p-mTOR, and decreased the proliferation rate of αTC1-6 cells. Conclusions/interpretation: GABA signalling critically controls the alpha cell population in pancreatic islets. Low intraislet GABA may contribute to alpha cell hyperplasia in early type 1 diabetes
Modularization of multi-qubit controlled phase gate and its NMR implementation
Quantum circuit network is a set of circuits that implements a certain
computation task. Being at the center of the quantum circuit network, the
multi-qubit controlled phase shift is one of the most important quantum gates.
In this paper, we apply the method of modular structuring in classical computer
architecture to quantum computer and give a recursive realization of the
multi-qubit phase gate. This realization of the controlled phase shift gate is
convenient in realizing certain quantum algorithms. We have experimentally
implemented this modularized multi-qubit controlled phase gate in a three qubit
nuclear magnetic resonance quantum system. The network is demonstrated
experimentally using line selective pulses in nuclear magnetic resonance
technique. The procedure has the advantage of being simple and easy to
implement.Comment: to appear in Journal of Optics B: Quantum and Semiclassical Optic
Efficient Scheme for Initializing a Quantum Register with an Arbitrary Superposed State
Preparation of a quantum register is an important step in quantum computation
and quantum information processing. It is straightforward to build a simple
quantum state such as |i_1 i_2 ... i_n\ket with being either 0 or 1,
but is a non-trivial task to construct an {\it arbitrary} superposed quantum
state. In this Paper, we present a scheme that can most generally initialize a
quantum register with an arbitrary superposition of basis states.
Implementation of this scheme requires standard 1- and 2-bit gate
operations, {\it without introducing additional quantum bits}. Application of
the scheme in some special cases is discussed.Comment: 4 pages, 4 figures, accepted by Phys. Rev.
Negative-Parity States and beta-decays in odd Ho and Dy Nuclei with A=151,153
We have investigated the negative-parity states and electromagnetic
transitions in Ho and Dy within the framework of the
interacting boson fermion model 2 (IBFM-2). Spin assignments for some states
with uncertain spin are made based on this calculation. Calculated excitation
energies, electromagnetic transitions and branching ratios are compared with
available experimental data and a good agreement is obtained. The model wave
functions have been used to study -decays from Ho to Dy isotones, and
the calculated values are close to the experimental data.Comment: 23 pages and 8 figures. accepted by Physical Review
Superdeformed Band in ^{36}Ar Described by Projected Shell Model
The projected shell model implements shell model configuration mixing in the
projected deformed basis. Our analysis on the recently observed superdeformed
band in Ar suggests that the neutron and proton 2-quasiparticle and the
4-quasiparticle bands cross the superdeformed ground band at the same angular
momentum. This constitutes a picture of band disturbance in which the first and
the second band-crossing, commonly seen at separate rotation frequencies in
heavy nuclei, occur simultaneously. We also attempt to understand the
assumptions of two previous theoretical calculations which interpreted this
band. Electromagnetic properties of the band are predicted.Comment: 4 pages and 2 figures, accepted by Phys. Rev. C as a Rapid
Communicatio
Density Matrix in Quantum Mechanics and Distinctness of Ensembles Having the Same Compressed Density Matrix
We clarify different definitions of the density matrix by proposing the use
of different names, the full density matrix for a single-closed quantum system,
the compressed density matrix for the averaged single molecule state from an
ensemble of molecules, and the reduced density matrix for a part of an
entangled quantum system, respectively. We show that ensembles with the same
compressed density matrix can be physically distinguished by observing
fluctuations of various observables. This is in contrast to a general belief
that ensembles with the same compressed density matrix are identical. Explicit
expression for the fluctuation of an observable in a specified ensemble is
given. We have discussed the nature of nuclear magnetic resonance quantum
computing. We show that the conclusion that there is no quantum entanglement in
the current nuclear magnetic resonance quantum computing experiment is based on
the unjustified belief that ensembles having the same compressed density matrix
are identical physically. Related issues in quantum communication are also
discussed.Comment: 26 pages. To appear in Foundations of Physics, 36 (8), 200
- …