90 research outputs found
De Novo Duplication in the CHD7 Gene Associated With Severe CHARGE Syndrome.
CHARGE syndrome is an autosomal dominant developmental disorder associated with a constellation of traits involving almost every organ and sensory system, in particular congenital anomalies, including choanal atresia and malformations of the heart, inner ear, and retina. Variants in CHD7 have been shown to cause CHARGE syndrome. Here, we report the identification of a novel de novo p.Asp2119_Pro2120ins6 duplication variant in a conserved region of CHD7 in a severely affected boy presenting with 3 and 5 of the CHARGE cardinal major and minor signs, respectively, combined with congenital umbilical hernia, congenital hernia at the linea alba, mildly hypoplastic inferior vermis, slight dilatation of the lateral ventricles, prominent metopic ridge, and hypoglycemic episodes
Mycobacterium tuberculosis ClpP Proteases Are Co-transcribed but Exhibit Different Substrate Specificities
PMCID: PMC3613350This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Mutational Patterns in RNA Secondary Structure Evolution Examined in Three RNA Families
The goal of this work was to study mutational patterns in the evolution of RNA secondary structure. We analyzed bacterial tmRNA, RNaseP and eukaryotic telomerase RNA secondary structures, mapping structural variability onto phylogenetic trees constructed primarily from rRNA sequences. We found that secondary structures evolve both by whole stem insertion/deletion, and by mutations that create or disrupt stem base pairing. We analyzed the evolution of stem lengths and constructed substitution matrices describing the changes responsible for the variation in the RNA stem length. In addition, we used principal component analysis of the stem length data to determine the most variable stems in different families of RNA. This data provides new insights into the evolution of RNA secondary structures and patterns of variation in the lengths of double helical regions of RNA molecules. Our findings will facilitate design of improved mutational models for RNA structure evolution
The Diversification of the LIM Superclass at the Base of the Metazoa Increased Subcellular Complexity and Promoted Multicellular Specialization
Background: Throughout evolution, the LIM domain has been deployed in many different domain configurations, which has led to the formation of a large and distinct group of proteins. LIM proteins are involved in relaying stimuli received at the cell surface to the nucleus in order to regulate cell structure, motility, and division. Despite their fundamental roles in cellular processes and human disease, little is known about the evolution of the LIM superclass. Results: We have identified and characterized all known LIM domain-containing proteins in six metazoans and three nonmetazoans. In addition, we performed a phylogenetic analysis on all LIM domains and, in the process, have identified a number of novel non-LIM domains and motifs in each of these proteins. Based on these results, we have formalized a classification system for LIM proteins, provided reasonable timing for class and family origin events; and identified lineagespecific loss events. Our analysis is the first detailed description of the full set of LIM proteins from the non-bilaterian species examined in this study. Conclusion: Six of the 14 LIM classes originated in the stem lineage of the Metazoa. The expansion of the LIM superclass at the base of the Metazoa undoubtedly contributed to the increase in subcellular complexity required for the transition from a unicellular to multicellular lifestyle and, as such, was a critically important event in the history of animal multicellularity
Mode d'action des fibres alimentaires sur le transit digestif : hypothèse physique
International audienc
Effets du faisceau laser sur la fonction visuelle
Les dangers présentés par l'emploi des lasers, en particulier les risques oculaires, ont imposé la définition de limites d’exposition. La détermination de cette valeur nécessite de connaître les paramètres physiques et biologiques de l’exposition mais aussi de définir la notion de critère d'atteinte. La description de ces paramètres. des mécanismes impliqués dans les effets biologiques des lasers et de différents résultats expérimentaux illustre les difficultés rencontrées dans la détermination des limites d’exposition et l’incertitude des normes actuelles
Traitement des coques de tournesol par vapocraquage : influence sur la composition et la dégradation in sacco des polyosides pariétaux
International audienc
Fermentescibilité des constituants pariétaux de divers produits lignocellulosiques
International audienc
- …