700 research outputs found

    On the metallicity distribution in the nuclei of elliptical galaxies

    Get PDF
    Using current models of spectrophotometric properties of single age, single metallicity stellar populations I have computed the Mg2, Hbeta, Fe52 and Fe53 line strengths for stellar populations with a metallicity spread. The comparison of these models with the nuclear indices of early type galaxies yield the following major conclusions. The metallicity distribution of the closed box, simple model for the chemical evolution of galaxies is not able to account for Mg2 and Fe52, Fe53 values in excess of 0.27,3 and 2.7, respectively, which are observed in the nuclei of a large fraction of Ellipticals. To reproduce the line strengths in these galaxies high average metallicities, small metallicity dispersion and old ages are required. In particular, Mg2 values of 0.3 are reproduced only with a metallicity distribution ranging from 0.5\Zsun to 3\Zsun, and 15 Gyr old stellar populations. I interpret the data as indicating that the gas out of which the nuclei of ellipticals formed was pre-enriched, to larger metallicities for increasing \Mgtw.The presence of a metallicity dispersion does not alter the relation between Mg2 and Iron indices with respect to the SSP models. Thus, the need for a Mg/Fe overabundance in the strongest lined galaxies is confirmed, and I present a simple way to estimate the [Mg/Fe] ratio on the basis of existing models with solar abundance ratios.Comment: 16 pages, Latex File+mnrasl.sty, 8 Postscript figures, to appear in MNRA

    Constraints on galaxy formation from alpha-enhancement in luminous elliptical galaxies

    Full text link
    We explore the formation of alpha-enhanced and metal-rich stellar populations in the nuclei of luminous ellipticals under the assumption of two extreme galaxy formation scenarios based on hierarchical clustering, namely a fast clumpy collapse and the merger of two spirals. We investigate the parameter space of star formation time-scale, IMF slope, and stellar yields. In particular, the latter add a huge uncertainty in constraining time-scales and IMF slopes. We find that -- for Thielemann, Nomoto & Hashimoto nucleosynthesis -- in a fast clumpy collapse scenario an [alpha/Fe] overabundance of approx. 0.2 dex in the high metallicity stars can be achieved with a Salpeter IMF and star formation time-scales of the order 10^9 yr. The scenario of two merging spirals which are similar to our Galaxy, instead, fails to reproduce alpha-enhanced abundance ratios in the metal-rich stars, unless the IMF is flattened during the burst ignited by the merger. This result is independent of the burst time-scale. We suggest that abundance gradients give hints to distinguish between the two extreme formation scenarios considered in this paper.Comment: Accepted for publication in MNRAS, LaTex 2.09 with mn.sty, 13 pages, 5 figure

    The evolution of the color gradients of early-type cluster galaxies

    Get PDF
    We investigate the origin of color gradients in cluster early-type galaxies to probe whether pure age or pure metallicity gradients can explain the observed data in local and distant (z approx 0.4) samples. We measure the surface brightness profiles of the 20 brightest early-type galaxies of CL0949+44 (hereafter CL0949) at redshift z=0.35-0.38 from HST WF2 frames taken in the filters F555W, F675W, F814W. We determine the color profiles (V-R)(r), (V-I)(r), and (R-I)(r) as a function of the radial distance r in arcsec, and fit logarithmic gradients in the range -0.2 to 0.1 mag per decade. These values are similar to what is found locally for the colors (U-B), (U-V), (B-V) which approximately match the (V-R), (V-I), (R-I) at redshift approx 0.4. We analyse the results with up to date stellar population models. We find that passive evolution of metallicity gradients (approx 0.2 dex per radial decade) provides a consistent explanation of the local and distant galaxies' data. Invoking pure age gradients (with fixed metallicity) to explain local color gradients produces too steep gradients at redshifts z approx 0.4. Pure age gradients are consistent with the data only if large present day ages (>=15 Gyr) are assumed for the galaxy centers.Comment: 23 pages, 19 figures, Accepted for publication in A&

    The star formation histories of early-type galaxies: insights from the rest-frame ultra-violet

    Get PDF
    Our current understanding of the star formation histories of early-type galaxies is reviewed, in the context of recent observational studies of their ultra-violet (UV) properties. Combination of UV and optical spectro-photometric data indicates that the bulk of the stellar mass in the early-type population forms at high redshift (z > 2), typically over short timescales (< 1 Gyr). Nevertheless, early-types of all luminosities form stars over the lifetime of the Universe, with most luminous (-23 < M(V) < -21) systems forming 10-15% of their stellar mass after z = 1 (with a scatter to higher value), while their less luminous (M(V) > -21) counterparts form 30-60% of their mass in the same redshift range. The large scatter in the (rest-frame) UV colours in the redshift range 0 < z < 0.7 indicates widespread low-level star formation in the early-type population over the last 8 billion years. The mass fraction of young (< 1 Gyr old) stars in luminous early-type galaxies varies between 1% and 6% at z~0 and is in the range 5-13% at z~0.7. The intensity of recent star formation and the bulk of the UV colour distribution is consistent with what might be expected from minor mergers (mass ratios < 1:6) in an LCDM cosmology.Comment: Brief Review, Mod. Phys. Lett.

    Globular Clusters in the Magellanic Clouds.I:BV CCD-Photometry for 11 Clusters

    Get PDF
    We present BV CCD-data for 11 intermediate-age LMC clusters; the main conclusions are: 1. in the (V_to, V_cl,m) and (V-to, (V_to-V_cl,m)) planes the models yield a good overall description of the data; 2. with the current sample, it is impossible to firmly choose between "classical" and "overshooting" models; 3. the separation in colour between the MS band and the Red He-burning Clump is smaller than predicted by theoretical tracks; 4. the existence of the so-called "RGB phase-transition (Renzini and Buzzoni 1986) seems to be confirmed.Comment: 62 pages, 37 figures and tables 6 to 16 available on request, uuencoded compressed postscript file with tables 1-5 and 17-18 included, BAP 08-1994-020-OA

    Early star formation traced by the highest redshift quasars

    Full text link
    The iron abundance relative to alpha-elements in the circumnuclear region of quasars is regarded as a clock of the star formation history and, more specifically, of the enrichment by SNIa. We investigate the iron abundance in a sample of 22 quasars in the redshift range 3.0<z<6.4 by measuring their rest frame UV FeII bump, which is shifted into the near-IR, and by comparing it with the MgII 2798 flux. The observations were performed with a device that can obtain near-IR spectra in the range 0.8-2.4 um in one shot, thereby enabling an optimal removal of the continuum underlying the FeII bump. We detect iron in all quasars including the highest redshift (z=6.4) quasar currently known. The uniform observational technique and the wide redshift range allows a reliable study of the trend of the FeII/MgII ratio with redshift. We find the FeII/MgII ratio is nearly constant at all redshifts, although there is marginal evidence for a higher FeII/MgII ratio in the quasars at z~6. If the FeII/MgII ratio reflects the Fe/alpha abundance, this result suggests that the z~6 quasars have already undergone a major episode of iron enrichment. We discuss the possible implications of this finding for the star formation history at z>6. We also detect a population of weak iron emitters at z~4.5, which are possibly hosted in systems that evolved more slowly. Alternatively, the trend of the FeII/MgII ratio at high redshift may reflect significantly different physical conditions of the circumnuclear gas in such high redshift quasars.Comment: Replaced to match the accepted version (ApJL in press), 5 page

    The NIR structure of the barred galaxy NGC253 from VISTA

    Full text link
    [abridged] We used J and Ks band images acquired with the VISTA telescope as part of the science verification to quantify the structures in the stellar disk of the barred Sc galaxy NGC253. Moving outward from the galaxy center, we find a nuclear ring within the bright 1 kpc diameter nucleus, then a bar, a ring with 2.9 kpc radius. From the Ks image we obtain a new measure of the deprojected length of the bar of 2.5 kpc. The bar's strength, as derived from the curvature of the dust lanes in the J-Ks image, is typical of weak bars. From the deprojected length of the bar, we establish the corotation radius (R_CR=3 kpc) and bar pattern speed (Omega_b = 61.3 km /s kpc), which provides the connection between the high-frequency structures in the disk and the orbital resonances induced by the bar. The nuclear ring is located at the inner Lindblad resonance. The second ring does not have a resonant origin, but it could be a merger remnant or a transient structure formed during an intermediate stage of the bar formation. The inferred bar pattern speed places the outer Lindblad resonance within the optical disk at 4.9 kpc, in the same radial range as the peak in the HI surface density. The disk of NGC253 has a down-bending profile with a break at R~9.3 kpc, which corresponds to about 3 times the scale length of the inner disk. We discuss the evidence for a threshold in star formation efficiency as a possible explanation of the steep gradient in the surface brightness profile at large radii. The NIR photometry unveils the dynamical response of the NGC253 stellar disk to its central bar. The formation of the bar may be related to the merger event that determined the truncation of stars and gas at large radii and the perturbation of the disk's outer edge.Comment: Accepted for publication in Astronomy & Astrphysics. High resolution pdf file is available at the following link: https://www.dropbox.com/s/4o4cofs1lyjrtpv/NGC253.pd
    corecore