418 research outputs found
Planck-scale relativity from quantum -Poincar\'e algebra
Extending the commutator algebra of quantum -Poincar\'e symmetry to
the whole of the phase space, and assuming that this algebra is to be covariant
under action of deformed Lorentz generators, we derive the transformation
properties of positions under the action of deformed boosts. It turns out that
these transformations leave invariant the quadratic form in the position space,
which is the Minkowski metric and that the boosts saturate. The issues of
massless and massive particles motion, as well as time dilatation and length
contraction in this new framework are also studied.Comment: 14 pages, LaTeX, no figure
Scalar field theory on -Minkowski space-time and Doubly Special Relativity
In this paper we recall the construction of scalar field action on
-Minkowski space-time and investigate its properties. In particular we
show how the co-product of -Poincar\'e algebra of symmetries arises
from the analysis of the symmetries of the action, expressed in terms of
Fourier transformed fields. We also derive the action on commuting space-time,
equivalent to the original one. Adding the self-interaction term we
investigate the modified conservation laws. We show that the local interactions
on -Minkowski space-time give rise to 6 inequivalent ways in which
energy and momentum can be conserved at four-point vertex. We discuss the
relevance of these results for Doubly Special Relativity.Comment: 17 pages; some editing done, final version to be published in Int. J.
Mod. Phys.
Relative Locality in -Poincar\'e
We show that the -Poincar\'e Hopf algebra can be interpreted in the
framework of curved momentum space leading to the relativity of locality
\cite{AFKS}. We study the geometric properties of the momentum space described
by -Poincar\'e, and derive the consequences for particles propagation
and energy-momentum conservation laws in interaction vertices, obtaining for
the first time a coherent and fully workable model of the deformed relativistic
kinematics implied by -Poincar\'e. We describe the action of boost
transformations on multi-particles systems, showing that in order to keep
covariant the composed momenta it is necessary to introduce a dependence of the
rapidity parameter on the particles momenta themselves. Finally, we show that
this particular form of the boost transformations keeps the validity of the
relativity principle, demonstrating the invariance of the equations of motion
under boost transformations.Comment: 24 pages, 4 figures, 1 table. v2 matches accepted CQG versio
Doubly Special Relativity and de Sitter space
In this paper we recall the construction of Doubly Special Relativity (DSR)
as a theory with energy-momentum space being the four dimensional de Sitter
space. Then the bases of the DSR theory can be understood as different
coordinate systems on this space. We investigate the emerging geometrical
picture of Doubly Special Relativity by presenting the basis independent
features of DSR that include the non-commutative structure of space-time and
the phase space algebra. Next we investigate the relation between our geometric
formulation and the one based on quantum -deformations of the
Poincar\'e algebra. Finally we re-derive the five-dimensional differential
calculus using the geometric method, and use it to write down the deformed
Klein-Gordon equation and to analyze its plane wave solutions.Comment: 26 pages, one formula (67) corrected; some remarks adde
The FIRST-2MASS Red Quasar Survey
Combining radio observations with optical and infrared color selection --
demonstrated in our pilot study to be an efficient selection algorithm for
finding red quasars -- we have obtained optical and infrared spectroscopy for
120 objects in a complete sample of 156 candidates from a sky area of 2716
square degrees. Consistent with our initial results, we find our selection
criteria -- J-K>1.7, R-K>4.0 -- yield a ~50% success rate for discovering
quasars substantially redder than those found in optical surveys. Comparison
with UVX- and optical color-selected samples shows that >~ 10% of the quasars
are missed in a magnitude-limited survey. Simultaneous two-frequency radio
observations for part of the sample indicate that a synchrotron continuum
component is ruled out as a significant contributor to reddening the quasars'
spectra. We go on to estimate extinctions for our objects assuming their red
colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V)
values ranging from near zero to 2.5 magnitudes. Correcting the K-band
magnitudes for these extinctions, we find that for K <= 14.0, red quasars make
up between 25% and 60% of the underlying quasar population; owing to the
incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only
set a lower limit to the radio-detected red quasar population of >20-30%.Comment: 80 pages (single-column, preprint format) 20 figures, Accepted for
publicated in Ap
Kinematics of a relativistic particle with de Sitter momentum space
We discuss kinematical properties of a free relativistic particle with
deformed phase space in which momentum space is given by (a submanifold of) de
Sitter space. We provide a detailed derivation of the action, Hamiltonian
structure and equations of motion for such free particle. We study the action
of deformed relativistic symmetries on the phase space and derive explicit
formulas for the action of the deformed Poincare' group. Finally we provide a
discussion on parametrization of the particle worldlines stressing analogies
and differences with ordinary relativistic kinematics.Comment: RevTeX, 12 pages, no figure
Hamiltonian analysis of SO(4,1) constrained BF theory
In this paper we discuss canonical analysis of SO(4,1) constrained BF theory.
The action of this theory contains topological terms appended by a term that
breaks the gauge symmetry down to the Lorentz subgroup SO(3,1). The equations
of motion of this theory turn out to be the vacuum Einstein equations. By
solving the B field equations one finds that the action of this theory contains
not only the standard Einstein-Cartan term, but also the Holst term
proportional to the inverse of the Immirzi parameter, as well as a combination
of topological invariants. We show that the structure of the constraints of a
SO(4,1) constrained BF theory is exactly that of gravity in Holst formulation.
We also briefly discuss quantization of the theory.Comment: 9 page
Asymptotic Flatness in Rainbow Gravity
A construction of conformal infinity in null and spatial directions is
constructed for the Rainbow-flat space-time corresponding to doubly special
relativity. From this construction a definition of asymptotic DSRness is put
forward which is compatible with the correspondence principle of Rainbow
gravity. Furthermore a result equating asymptotically flat space-times with
asymptotically DSR spacetimes is presented.Comment: 11 page
- âŠ