73 research outputs found
The Effect of low Momentum Quantum Fluctuations on a Coherent Field Structure
In the present work the evolution of a coherent field structure of the
Sine-Gordon equation under quantum fluctuations is studied. The basic equations
are derived from the coherent state approximation to the functional
Schr\"odinger equation for the field. These equations are solved asymptotically
and numerically for three physical situations. The first is the study of the
nonlinear mechanism responsible for the quantum stability of the soliton in the
presence of low momentum fluctuations. The second considers the scattering of a
wave by the Soliton. Finally the third problem considered is the collision of
Solitons and the stability of a breather.
It is shown that the complete integrability of the Sine-Gordon equation
precludes fusion and splitting processes in this simplified model.
The approximate results obtained are non-perturbative in nature, and are
valid for the full nonlinear interaction in the limit of low momentum
fluctuations. It is also found that these approximate results are in good
agreement with full numerical solutions of the governing equations. This
suggests that a similar approach could be used for the baby Skyrme model, which
is not completely integrable. In this case the higher space dimensionality and
the internal degrees of freedom which prevent the integrability will be
responsable for fusion and splitting processes. This work provides a starting
point in the numerical solution of the full quantum problem of the interaction
of the field with a fluctuation.Comment: 15 pages, 9 (ps) figures, Revtex file. Some discussion expanded but
conclusions unchanged. Final version to appear in PR
Nucleon-nucleon interaction in the Skyrme model
We consider the interaction of two skyrmions in the framework of the sudden
approximation. The widely used product ansatz is investigated. Its failure in
reproducing an attractive central potential is associated with terms that
violate G-parity. We discuss the construction of alternative ans\"atze and
identify a plausible solution to the problem.Comment: 18 pages, 9 figure
Stable spinning optical solitons in three dimensions
We introduce spatiotemporal spinning solitons (vortex tori) of the
three-dimensional nonlinear Schrodinger equation with focusing cubic and
defocusing quintic nonlinearities. The first ever found completely stable
spatiotemporal vortex solitons are demonstrated. A general conclusion is that
stable spinning solitons are possible as a result of competition between
focusing and defocusing nonlinearities.Comment: 4 pages, 6 figures, accepted to Phys. Rev. Let
Magnetothermodynamics of BPS baby skyrmions
The magnetothermodynamics of skyrmion type matter described by the gauged BPS
baby Skyrme model at zero temperature is investigated. We prove that the BPS
property of the model is preserved also for boundary conditions corresponding
to an asymptotically constant magnetic field. The BPS bound and the
corresponding BPS equations saturating the bound are found. Further, we show
that one may introduce pressure in the gauged model by a redefinition of the
superpotential. Interestingly, this is related to non-extremal type solutions
in the so-called fake supersymmetry method. Finally, we compute the equation of
state of magnetized BSP baby skyrmions inserted into an external constant
magnetic field and under external pressure , i.e., , where
is the "volume" (area) occupied by the skyrmions. We show that the BPS baby
skyrmions form a ferromagnetic medium.Comment: Latex, 39 pages, 14 figures. v2: New results and references added,
physical interpretation partly change
Increase of universality in human brain during mental imagery from visual perception
BACKGROUND: Different complex systems behave in a similar way near their critical points of phase transitions which leads to an emergence of a universal scaling behaviour. Universality indirectly implies a long-range correlation between constituent subsystems. As the distributed correlated processing is a hallmark of higher complex cognition, I investigated a measure of universality in human brain during perception and mental imagery of complex real-life visual object like visual art. METHODOLOGY/PRINCIPAL FINDINGS: A new method was presented to estimate the strength of hidden universal structure in a multivariate data set. In this study, I investigated this method in the electrical activities (electroencephalogram signals) of human brain during complex cognition. Two broad groups--artists and non-artists--were studied during the encoding (perception) and retrieval (mental imagery) phases of actual paintings. Universal structure was found to be stronger in visual imagery than in visual perception, and this difference was stronger in artists than in non-artists. Further, this effect was found to be largest in the theta band oscillations and over the prefrontal regions bilaterally. CONCLUSIONS/SIGNIFICANCE: Phase transition like dynamics was observed in the electrical activities of human brain during complex cognitive processing, and closeness to phase transition was higher in mental imagery than in real perception. Further, the effect of long-term training on the universal scaling was also demonstrated
Self-organization of developing embryo using scale-invariant approach
<p>Abstract</p> <p>Background</p> <p>Self-organization is a fundamental feature of living organisms at all hierarchical levels from molecule to organ. It has also been documented in developing embryos.</p> <p>Methods</p> <p>In this study, a scale-invariant power law (SIPL) method has been used to study self-organization in developing embryos. The SIPL coefficient was calculated using a centro-axial skew symmetrical matrix (CSSM) generated by entering the components of the Cartesian coordinates; for each component, one CSSM was generated. A basic square matrix (BSM) was constructed and the determinant was calculated in order to estimate the SIPL coefficient. This was applied to developing <it>C. elegans </it>during early stages of embryogenesis. The power law property of the method was evaluated using the straight line and Koch curve and the results were consistent with fractal dimensions (fd). Diffusion-limited aggregation (DLA) was used to validate the SIPL method.</p> <p>Results and conclusion</p> <p>The fractal dimensions of both the straight line and Koch curve showed consistency with the SIPL coefficients, which indicated the power law behavior of the SIPL method. The results showed that the ABp sublineage had a higher SIPL coefficient than EMS, indicating that ABp is more organized than EMS. The fd determined using DLA was higher in ABp than in EMS and its value was consistent with type 1 cluster formation, while that in EMS was consistent with type 2.</p
Copying and Evolution of Neuronal Topology
We propose a mechanism for copying of neuronal networks that is of considerable interest for neuroscience for it suggests a neuronal basis for causal inference, function copying, and natural selection within the human brain. To date, no model of neuronal topology copying exists. We present three increasingly sophisticated mechanisms to demonstrate how topographic map formation coupled with Spike-Time Dependent Plasticity (STDP) can copy neuronal topology motifs. Fidelity is improved by error correction and activity-reverberation limitation. The high-fidelity topology-copying operator is used to evolve neuronal topologies. Possible roles for neuronal natural selection are discussed
Complex systems and the technology of variability analysis
Characteristic patterns of variation over time, namely rhythms, represent a defining feature of complex systems, one that is synonymous with life. Despite the intrinsic dynamic, interdependent and nonlinear relationships of their parts, complex biological systems exhibit robust systemic stability. Applied to critical care, it is the systemic properties of the host response to a physiological insult that manifest as health or illness and determine outcome in our patients. Variability analysis provides a novel technology with which to evaluate the overall properties of a complex system. This review highlights the means by which we scientifically measure variation, including analyses of overall variation (time domain analysis, frequency distribution, spectral power), frequency contribution (spectral analysis), scale invariant (fractal) behaviour (detrended fluctuation and power law analysis) and regularity (approximate and multiscale entropy). Each technique is presented with a definition, interpretation, clinical application, advantages, limitations and summary of its calculation. The ubiquitous association between altered variability and illness is highlighted, followed by an analysis of how variability analysis may significantly improve prognostication of severity of illness and guide therapeutic intervention in critically ill patients
What is known about the role of rural-urban residency in relation to self-management in people affected by cancer who have completed primary treatment? A scoping review.
Purpose
Despite wide acknowledgement of differences in levels of support and health outcomes between urban and rural areas there is a lack of research that explicitly examines these differences in relation to self-management in people affected by cancer following treatment. This scoping review aimed to map the existing literature that examines self-management in people affected by cancer who were post-treatment from rural and urban areas.
Methods
Arksey and O’Malley’s framework for conducting a scoping review was utilised. Keyword searches were performed in: Academic Search Complete, CINAHL, MEDLINE, PsycINFO, Scopus and Web of Science. Supplementary searching activities were also conducted.
Results
438 articles were initially retrieved and 249 duplicates removed leaving 192 articles that were screened by title, abstract and full text. 9 met the eligibility criteria and were included in the review. They were published from 2011-2018 and conducted in the USA (n=6), Australia (n=2) and Canada (n=1). None of the studies offered insight into self-managing cancer within a rural-urban context in the UK. Studies used qualitative (n=4), mixed methods (n=4) and quantitative designs (n=1).
Conclusion
If rural and urban populations define their health in different ways as some of the extant literature suggests then efforts to support self-management in both populations will need to be better informed by robust evidence given the increasing focus on patient centred care. It is important to consider if residency can be a predictor of as well as, a barrier or facilitator to self-management
- …