26,608 research outputs found

    Have Recent Budget Policies Contributed to Long-Run Fiscal Stability?

    Get PDF
    Examines developments in budget policies since January 2010; the president's 2011 budget, including economic stimulus and tax and spending policies; congressional action; and issues for health reform. Considers their effect on long-term sustainability

    Committees Tackle the Deficit

    Get PDF
    Summarizes the recommendations of a presidential commission and private bipartisan committee for reducing the federal deficit by cutting healthcare costs, Social Security outlays, and discretionary spending, and by raising taxes

    Controlling the Deficit: The Debate Continues

    Get PDF
    Looks at budget cuts proposed by House Republicans and the president's framework with respect to savings in healthcare spending, Social Security and other entitlement spending, and discretionary spending; tax policy; and the Budget Control Act

    Zeros of the Jimbo, Miwa, Ueno tau function

    Full text link
    We introduce a family of local deformations for meromorphic connections on the Riemann sphere in the neighborhood of a higher rank (simple) singularity. Following a scheme introduced by Malgrange we use these local models to prove that the zeros of the tau function introduced by Jimbo, Miwa and Ueno occur precisely at those points in the deformation space at which a certain Birkhoff-Riemann- Hilbert problem fails to have a solution.Comment: 59 page

    Robust radiocarbon dating of wood samples by high-sensitivity liquid scintillation spectroscopy in the 50–70 kyr age range

    Get PDF
    Although high-sensitivity liquid scintillation (LS) spectroscopy is theoretically capable of producing finite radiocarbon ages in the 50,000- to 70,000-yr range, there is little evidence in the literature that meaningful dates in this time period have been obtained. The pressing need to undertake calibration beyond 26 kyr has resulted in the regular publication of ¹⁴C results in excess of 50 kyr, yet very little effort has been made to demonstrate their accuracy or precision. There is a paucity of systematic studies of the techniques required to produce reliable dates close to background and the methods needed to assess contamination from either in situ sources or laboratory handling and processing. We have studied the requirements for producing accurate and reliable dates beyond 50 kyr. Laboratory procedures include optimization of LS spectrometers to obtain low and stable non-¹⁴C background count rates, use of low-background counting vials, large benzene volumes, long counting times, and preconditioning of vacuum lines. We also discuss the need for multiple analyses of a suitable material containing no original ¹⁴C (background blank) and the application of an appropriate statistical model to compensate for variability in background contamination beyond counting statistics. Accurate and reproducible finite ages >60 kyr are indeed possible by high-sensitivity LS spectroscopy, but require corroborating background blank data to be defensible

    Enhancing laser sideband cooling in one-dimensional optical lattices via the dipole interaction

    Full text link
    We study resolved sideband laser cooling of a one-dimensional optical lattice with one atom per site, and in particular the effect of the dipole interaction between radiating atoms. For simplicity, we consider the case where only a single cooling laser is applied. We derive a master equation, and solve it in the limit of a deep lattice and weak laser driving. We find that the dipole interaction significantly changes the final temperature of the particles, increasing it for some phonon wavevectors and decreasing it for others. The total phonon energy over all modes is typically higher than in the non-interacting case, but can be made lower by the right choice of parameters

    GRBs and the thermalization process of electron-positron plasmas

    Full text link
    We discuss the temporal evolution of the pair plasma created in Gamma-Ray Burst sources. A particular attention is paid to the relaxation of the plasma into thermal equilibrium. We also discuss the connection between the dynamics of expansion and the spatial geometry of the plasma. The role of the baryonic loading parameter is emphasized.Comment: 4 pages, 3 figures, in the Proceedings of the "Gamma Ray Bursts 2007" meeting, November 5-9, 2007, Santa Fe, New Mexico, US

    Which processes drive observed variations of HCHO columns over India?

    Get PDF
    We interpret HCHO column variations observed by the Ozone Monitoring Instrument (OMI), aboard the NASA Aura satellite, over India during 2014 using the GEOS-Chem atmospheric chemistry and transport model. We use a nested version of the model with a horizontal resolution of approximately 25 km. HCHO columns are related to local emissions of volatile organic compounds (VOCs) with a spatial smearing that increases with the VOC lifetime. Over India, HCHO has biogenic, pyrogenic, and anthropogenic VOC sources. Using a 0-D photochemistry model, we find that isoprene has the largest molar yield of HCHO which is typically realized within a few hours. We also find that forested regions that neighbour major urban conurbations are exposed to high levels of nitrogen oxides. This results in depleted hydroxyl radical concentrations and a delay in the production of HCHO from isoprene oxidation. We find that propene is the only anthropogenic VOC emitted in major Indian cities that produces HCHO at a comparable (but slower) rate to isoprene. The GEOS-Chem model reproduces the broad-scale annual mean HCHO column distribution observed by OMI (<i>r</i> = 0.6), which is dominated by a distinctive meridional gradient in the northern half of the country, and by localized regions of high columns that coincide with forests. Major discrepancies are noted over the Indo-Gangetic Plain (IGP) and Delhi. We find that the model has more skill at reproducing observations during winter (JF) and pre-monsoon (MAM) months with Pearson correlations <i>r</i> &gt; 0.5 but with a positive model bias of  <mo form="infix">≃</mo> 1×10<sup>15</sup> molec cm<sup>−2</sup>. During the monsoon season (JJAS) we reproduce only a diffuse version of the observed meridional gradient (<i>r</i> = 0.4). We find that on a continental scale most of the HCHO column seasonal cycle is explained by monthly variations in surface temperature (<i>r</i> = 0.9), suggesting a role for biogenic VOCs, in agreement with the 0-D and GEOS-Chem model calculations. We also find that the seasonal cycle during 2014 is not significantly different from the 2008 to 2015 mean seasonal variation. There are two main loci for biomass burning (the states of Punjab and Haryana, and northeastern India), which we find makes a significant contribution (up to 1×10<sup>15</sup> molec cm<sup>−2</sup>) to observed HCHO columns only during March and April over northeastern India. The slow production of HCHO from propene oxidation results in a smeared hotspot over Delhi that we resolve only on an annual mean timescale by using a temporal oversampling method. Using a linear regression model to relate GEOS-Chem isoprene emissions to HCHO columns we infer seasonal isoprene emissions over two key forest regions from the OMI HCHO column data. We find that the a posteriori emissions are typically lower than the a priori emissions, with a much stronger reduction of emissions during the monsoon season. We find that this reduction in emissions during monsoon months coincides with a large drop in satellite observations of leaf phenology that recovers in post monsoon months. This may signal a forest-scale response to monsoon conditions
    corecore