20 research outputs found

    Gastric transit and small intestinal transit time and motility assessed by a magnet tracking system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tracking an ingested magnet by the Magnet Tracking System MTS-1 (Motilis, Lausanne, Switzerland) is an easy and minimally-invasive method to assess gastrointestinal transit. The aim was to test the validity of MTS-1 for assessment of gastric transit time and small intestinal transit time, and to illustrate transit patterns detected by the system.</p> <p>Methods</p> <p>A small magnet was ingested and tracked by an external matrix of 16 magnetic field sensors (4 × 4) giving a position defined by 5 coordinates (position: <b>x, y, z, and angle: θ, ϕ)</b>. Eight healthy subjects were each investigated three times: (1) with a small magnet mounted on a capsule endoscope (PillCam); (2) with the magnet alone and the small intestine in the fasting state; and (3) with the magnet alone and the small intestine in the postprandial state.</p> <p>Results</p> <p>Experiment (1) showed good agreement and no systematic differences between MTS-1 and capsule endoscopy when assessing gastric transit (median difference 1 min; range: 0-6 min) and small intestinal transit time (median difference 0.5 min; range: 0-52 min). Comparing experiments (1) and (2) there were no systematic differences in gastric transit or small intestinal transit when using the magnet-PillCam unit and the much smaller magnetic pill. In experiments (2) and (3), short bursts of very fast movements lasting less than 5% of the time accounted for more than half the distance covered during the first two hours in the small intestine, irrespective of whether the small intestine was in the fasting or postprandial state. The mean contraction frequency in the small intestine was significantly lower in the fasting state than in the postprandial state (9.90 min<sup>-1 </sup>vs. 10.53 min<sup>-1</sup>) (p = 0.03).</p> <p>Conclusion</p> <p>MTS-1 is reliable for determination of gastric transit and small intestinal transit time. It is possible to distinguish between the mean contraction frequency of small intestine in the fasting state and in the postprandial state.</p

    MR-FLIP: A new method that combines FLIP with anatomical information for the spatial compliance assessment of the anal sphincter muscles.

    Get PDF
    INTRODUCTION Continence results from a complex interplay between anal canal (AC) muscles and sensory-motor feedback mechanisms. The AC's passive ability to withstand opening pressure - its compliance - has recently been shown to correlate with continence. Functional lumen imaging probe (FLIP) is used to assess AC compliance, although it provides no anatomical information. Therefore, compliance assessment of specific anatomical structures has not been possible, and the anatomical position of critical functional zones remains unknown. In addition, FLIP assumes a circular orifice cross-section, which has not been shown for the AC. To address those shortcomings, a technique combining FLIP with a medical imaging modality is needed. METHOD We implemented a new research method (MR-FLIP) that combines FLIP with MR-imaging. Twenty healthy volunteers underwent MR-FLIP and conventional FLIP assessment. MR-FLIP was validated by comparison with FLIP results. Anatomical markers were identified, and the cross-sectional shape of the orifice was investigated. RESULTS MR-FLIP provides compliance measurements identical to those obtained by conventional FLIP. Anatomical analysis revealed that the least compliant AC zone was located at the proximal end of the external anal sphincter. The AC cross-sectional shape was found to deviate only slightly from circularity in healthy volunteers. CONCLUSION The proposed method was equivalent to classical FLIP. It establishes for the first time a direct mapping between local tissue compliance and anatomical structure, which is key for gaining novel insights into (in)continence. In addition, MR-FLIP provides a tool for better understanding conventional FLIP measurements in the AC by quantifying its limitations and assumptions. This article is protected by copyright. All rights reserved

    Current management of the gastrointestinal complications of systemic sclerosis.

    Get PDF
    Systemic sclerosis is a multisystem autoimmune disorder that involves the gastrointestinal tract in more than 90% of patients. This involvement can extend from the mouth to the anus, with the oesophagus and anorectum most frequently affected. Gut complications result in a plethora of presentations that impair oral intake and faecal continence and, consequently, have an adverse effect on patient quality of life, resulting in referral to gastroenterologists. The cornerstones of gastrointestinal symptom management are to optimize symptom relief and monitor for complications, in particular anaemia and malabsorption. Early intervention in patients who develop these complications is critical to minimize disease progression and improve prognosis. In the future, enhanced therapeutic strategies should be developed, based on an ever-improving understanding of the intestinal pathophysiology of systemic sclerosis. This Review describes the most commonly occurring clinical scenarios of gastrointestinal involvement in patients with systemic sclerosis as they present to the gastroenterologist, with recommendations for the suggested assessment protocol and therapy in each situation

    Magnet tracking allows assessment of regional gastrointestinal transit times in children

    No full text
    Caroline Hedsund,1,2 Iben Moeller Joensson,2 Tine Gregersen,1 Lotte Fynne,1 Vincent Schlageter,3 Klaus Krogh1 1Neurogastroenterology Unit, Department of Hepatology and Gastroenterology, 2Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark; 3Motilis Medica SA, Lausanne, Switzerland Background: Data on small intestinal transit time in healthy children are lacking, and normal values for gastric emptying and colonic transit time are sparse. Conventional methods, including radiopaque markers, scintigraphy, and PillCam&trade; involve radiation or require the child to swallow a large pill. The minimally invasive, radiation-free Motility Tracking System-1 (MTS-1) has been introduced for description of gastrointestinal motility in adults. The aim of the study was to evaluate the MTS-1 for assessment of gastrointestinal transit times and motility patterns in healthy children. Methods: Twenty-one healthy children (nine girls), median age 10 (range 7&ndash;12) years were included. For evaluation with MTS-1, a small magnetic pill was ingested and tracked through the gastrointestinal tract by a matrix of 16 magnetic sensors placed behind a nonmagnetic bed. The children were investigated for 8 hours after swallowing the magnetic pill and again for 4 hours the following morning. After leaving the unit, each child came back after every bowel movement to determine if the pill had been expelled. Results: Nineteen children could swallow the pill. Characteristic contraction patterns were identified for the stomach (three per minute), small intestine (9&ndash;11 per minute), and colon (4&ndash;5 per minute). Median total gastrointestinal transit time was 37.7 (range 9.5&ndash;95.8) hours, median gastric emptying time was 37 (range 2&ndash;142) minutes, median small intestinal transit time was 302 (range 164 to >454) minutes, and median colorectal transit time was 38.1 (range 5.6&ndash;90.0) hours. Conclusion: MTS-1 allows minimally invasive evaluation of gastrointestinal motility in children. Use of the method is, however, restricted by the nonambulatory setup. Keywords: gastrointestinal motility, gastrointestinal transit time, healthy children, motility tracking syste
    corecore