1,382 research outputs found

    Universal transport in 2D granular superconductors

    Full text link
    The transport properties of quench condensed granular superconductors are presented and analyzed. These systems exhibit transitions from insulating to superconducting behavior as a function of inter-grain spacing. Superconductivity is characterized by broad transitions in which the resistance drops exponentially with reducing temperature. The slope of the log R versus T curves turns out to be universaly dependent on the normal state film resistance for all measured granular systems. It does not depend on the material, critical temperature, geometry, or experimental set-up. We discuss possible physical scenarios to explain these findings.Comment: 4 pages, 3 figure

    Coexistence of Coulomb blockade and zero bias anomaly in a strongly coupled quantum dot

    Full text link
    The current-voltage characteristics through a metallic quantum dot which is well coupled to a metallic lead are measured. It is shown that the I-V curves are composed of two contributions. One is a suppression of the tunneling conductivity at the Fermi level and the second is an oscillating feature which shifts with gate voltage. The results indicate that Zero-Bias-Anomaly and Coulomb Blockade phenomena coexist in an asymmetric strongly coupled quantum dot.Comment: 4 pages, 4 figure

    The signature of a double quantum-dot structure in the I-V characteristics of a complex system

    Full text link
    We demonstrate that by carefully analyzing the temperature dependent characteristics of the I-V measurements for a given complex system it is possible to determine whether it is composed of a single, double or multiple quantum-dot structure. Our approach is based on the orthodox theory for a double-dot case and is capable of simulating I-V characteristics of systems with any resistance and capacitance values and for temperatures corresponding to thermal energies larger than the dot level spacing. We compare I-V characteristics of single-dot and double-dot systems and show that for a given measured I-V curve considering the possibility of a second dot is equivalent to decreasing the fit temperature. Thus, our method allows one to gain information about the structure of an experimental system based on an I-V measurement.Comment: 12 pages 7 figure

    Absence of weak antilocalization in ferromagnetic films

    Full text link
    We present magnetoresistance measurements performed on ultrathin films of amorphous Ni and Fe. In these films the Curie temperature drops to zero at small thickness, making it possible to study the effect of ferromagnetism on localization. We find that non-ferromagnetic films are characterized by positive magnetoresistance. This is interpreted as resulting from weak antilocalization due to strong Bychkov-Rashba spin orbit scattering. As the films become ferromagnetic the magnetoresistance changes sign and becomes negative. We analyze our data to identify the individual contributions of weak localization, weak antilocalization and anisotropic magnetoresistance and conclude that the magnetic order suppresses the influence of spin-orbit effects on localization phenomena in agreement with theoretical predictions.Comment: 6 pages, 6 figure

    Zero bias anomaly in a two dimensional granular insulator

    Full text link
    We compare tunneling density of states (TDOS) into two ultrathin Ag films, one uniform and one granular, for different degrees of disorder. The uniform film shows a crossover from Altshuler-Aronov (AA) zero bias anomaly to Efros Shklovskii (ES) like Coulomb gap as the disorder is increased. The granular film, on the other hand, exhibits AA behavior even deeply in the insulating regime. We analyze the data and find that granularity introduces a new regime for the TDOS. While the conductivity is dominated by hopping between clusters of grains and is thus insulating, the TDOS probes the properties of an individual cluster which is "metallic".Comment: 4 pages, 4 figure

    Ulta-slow relaxation in discontinuous-film based electron glasses

    Full text link
    We present field effect measurements on discontinuous 2D thin films which are composed of a sub monolayer of nano-grains of Au, Ni, Ag or Al. Like other electron glasses these systems exhibit slow conductance relaxation and memory effects. However, unlike other systems, the discontinuous films exhibit a dramatic slowing down of the dynamics below a characteristic temperature TT^*. TT^* is typically between 10-50K and is sample dependent. For T<TT<T^* the sample exhibits a few other peculiar features such as repeatable conductance fluctuations in millimeter size samples. We suggest that the enhanced system sluggishness is related to the current carrying network becoming very dilute in discontinuous films so that the system contains many parts which are electrically very weakly connected and the transport is dominated by very few weak links. This enables studying the glassy properties of the sample as it transitions from a macroscopic sample to a mesocopic sample, hence, the results provide new insight on the underlying physics of electron glasses.Comment: 4 pages, 4 figure

    Is a multiple excitation of a single atom equivalent to a single excitation of an ensemble of atoms?

    Full text link
    Recent technological advances have enabled to isolate, control and measure the properties of a single atom, leading to the possibility to perform statistics on the behavior of single quantum systems. These experiments have enabled to check a question which was out of reach previously: Is the statistics of a repeatedly excitation of an atom N times equivalent to a single excitation of an ensemble of N atoms? We present a new method to analyze quantum measurements which leads to the postulation that the answer is most probably no. We discuss the merits of the analysis and its conclusion.Comment: 3 pages, 3 figure

    Proximity effect in ultrathin Pb/Ag multilayers within the Cooper limit

    Full text link
    We report on transport and tunneling measurements performed on ultra-thin Pb/Ag (strong coupled superconductor/normal metal) multilayers evaporated by quench condensation. The critical temperature and energy gap of the heterostructures oscillate with addition of each layer, demonstrating the validity of the Cooper limit model in the case of multilayers. We observe excellent agreement with a simple theory for samples with layer thickness larger than 30\AA . Samples with single layers thinner than 30\AA deviate from the Cooper limit theory. We suggest that this is due to the "inverse proximity effect" where the normal metal electrons improve screening in the superconducting ultrathin layer and thus enhance the critical temperature.Comment: 4 pages, 4 figure
    corecore