16,980 research outputs found

    Mean-value identities as an opportunity for Monte Carlo error reduction

    Get PDF
    In the Monte Carlo simulation of both Lattice field-theories and of models of Statistical Mechanics, identities verified by exact mean-values such as Schwinger-Dyson equations, Guerra relations, Callen identities, etc., provide well known and sensitive tests of thermalization bias as well as checks of pseudo random number generators. We point out that they can be further exploited as "control variates" to reduce statistical errors. The strategy is general, very simple, and almost costless in CPU time. The method is demonstrated in the two dimensional Ising model at criticality, where the CPU gain factor lies between 2 and 4.Comment: 10 pages, 2 tables. References updated and typos correcte

    Optimized Monte Carlo Method for glasses

    Get PDF
    A new Monte Carlo algorithm is introduced for the simulation of supercooled liquids and glass formers, and tested in two model glasses. The algorithm is shown to thermalize well below the Mode Coupling temperature and to outperform other optimized Monte Carlo methods. Using the algorithm, we obtain finite size effects in the specific heat. This effect points to the existence of a large correlation length measurable in equal time correlation functions.Comment: Proceedings of "X International workshop on Disordered Systems" held in Molveno (Italy), March 200

    Finite size effects in the specific heat of glass-formers

    Get PDF
    We report clear finite size effects in the specific heat and in the relaxation times of a model glass former at temperatures considerably smaller than the Mode Coupling transition. A crucial ingredient to reach this result is a new Monte Carlo algorithm which allows us to reduce the relaxation time by two order of magnitudes. These effects signal the existence of a large correlation length in static quantities.Comment: Proceeding of "3rd International Workshop on Complex Systems". Sendai (Japan). To appear on AIP Conference serie

    On the critical behavior of the specific heat in glass-formers

    Get PDF
    We show numeric evidence that, at low enough temperatures, the potential energy density of a glass-forming liquid fluctuates over length scales much larger than the interaction range. We focus on the behavior of translationally invariant quantities. The growing correlation length is unveiled by studying the Finite Size effects. In the thermodynamic limit, the specific heat and the relaxation time diverge as a power law. Both features point towards the existence of a critical point in the metastable supercooled liquid phase.Comment: Version to be published in Phys. Rev.

    Temperature chaos in 3D Ising Spin Glasses is driven by rare events

    Get PDF
    Temperature chaos has often been reported in literature as a rare-event driven phenomenon. However, this fact has always been ignored in the data analysis, thus erasing the signal of the chaotic behavior (still rare in the sizes achieved) and leading to an overall picture of a weak and gradual phenomenon. On the contrary, our analysis relies on a large-deviations functional that allows to discuss the size dependencies. In addition, we had at our disposal unprecedentedly large configurations equilibrated at low temperatures, thanks to the Janus computer. According to our results, when temperature chaos occurs its effects are strong and can be felt even at short distances.Comment: 5 pages, 5 figure

    Temperature chaos is a non-local effect

    Get PDF
    Temperature chaos plays a role in important effects, like for example memory and rejuvenation, in spin glasses, colloids, polymers. We numerically investigate temperature chaos in spin glasses, exploiting its recent characterization as a rare-event driven phenomenon. The peculiarities of the transformation from periodic to anti-periodic boundary conditions in spin glasses allow us to conclude that temperature chaos is non-local: no bounded region of the system causes it. We precise the statistical relationship between temperature chaos and the free-energy changes upon varying boundary conditions.Comment: 15 pages, 8 figures. Version accepted for publication in JSTA

    Numerical test of the Cardy-Jacobsen conjecture in the site-diluted Potts model in three dimensions

    Get PDF
    We present a microcanonical Monte Carlo simulation of the site-diluted Potts model in three dimensions with eight internal states, partly carried out in the citizen supercomputer Ibercivis. Upon dilution, the pure model's first-order transition becomes of the second-order at a tricritical point. We compute accurately the critical exponents at the tricritical point. As expected from the Cardy-Jacobsen conjecture, they are compatible with their Random Field Ising Model counterpart. The conclusion is further reinforced by comparison with older data for the Potts model with four states.Comment: Final version. 9 pages, 9 figure

    Comprehensive study of the critical behavior in the diluted antiferromagnet in a field

    Get PDF
    We study the critical behavior of the Diluted Antiferromagnet in a Field with the Tethered Monte Carlo formalism. We compute the critical exponents (including the elusive hyperscaling violations exponent θ\theta). Our results provide a comprehensive description of the phase transition and clarify the inconsistencies between previous experimental and theoretical work. To do so, our method addresses the usual problems of numerical work (large tunneling barriers and self-averaging violations).Comment: 4 pages, 2 figure

    Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes

    Full text link
    By using a theoretical formalism able to work in both real and k-spaces, the physical origin of the phenomenon of extraordinary transmission of light through quasi-periodic arrays of holes is revealed. Long-range order present in a quasiperiodic array selects the wavevector(s) of the surface electromagnetic mode(s) that allows an efficient transmission of light through subwavelength holes.Comment: 4 pages, 4 figure

    The out-equilibrium 2D Ising spin glass: almost, but not quite, a free-field theory

    Get PDF
    We consider the spatial correlation function of the two-dimensional Ising spin glass under out-equilibrium conditions. We pay special attention to the scaling limit reached upon approaching zero temperature. The field-theory of a non-interacting field makes a surprisingly good job at describing the spatial shape of the correlation function of the out-equilibrium Edwards-Anderson Ising model in two dimensions.Comment: 20 pages + 5 Figure
    • …
    corecore