2,648 research outputs found
Centrality, system size and energy dependences of charged-particle pseudo-rapidity distribution
Utilizing the three-fireball picture within the quark combination model, we
study systematically the charged particle pseudorapidity distributions in both
Au+Au and Cu+Cu collision systems as a function of collision centrality and
energy, 19.6, 62.4, 130 and 200 GeV, in full pseudorapidity
range. We find that: (i)the contribution from leading particles to
distributions increases with the decrease of the collision
centrality and energy respectively; (ii)the number of the leading particles is
almost independent of the collision energy, but it does depend on the nucleon
participants ; (iii)if Cu+Cu and Au+Au collisions at the same
collision energy are selected to have the same , the resulting of
charged particle distributions are nearly identical, both in the
mid-rapidity particle density and the width of the distribution. This is true
for both 62.4 GeV and 200 GeV data. (iv)the limiting fragmentation phenomenon
is reproduced. (iiv) we predict the total multiplicity and pseudorapidity
distribution for the charged particles in Pb+Pb collisions at TeV. Finally, we give a qualitative analysis of the
and as function of
and from RHIC to LHC.Comment: 12 pages, 8 figure
Paracrine GABA and insulin regulate pancreatic alpha cell proliferation in a mouse model of type 1 diabetes
Aims/hypothesis: This study aimed to elucidate the mechanism of increased proliferation of alpha cells in recent-onset type 1 diabetes. Pancreatic beta cells express GAD and produce γ-aminobutyric acid (GABA), which inhibits alpha cell secretion of glucagon. We explored the roles of GABA in alpha cell proliferation in conditions corresponding to type 1 diabetes in a mouse model and in vitro. Methods: Type 1 diabetes was induced by injecting the mice with streptozotocin (STZ). Some of the STZ-injected mice were treated with GABA (10 mg/kg daily) for 12 days. Isolated pancreatic islets were treated with STZ or STZ together with GABA for 2 days. The effects of GABA treatment on STZ-induced alpha cell proliferation in vivo and in vitro were assessed. The effect of muscimol, a GABA receptor agonist, on αTC1-6 cell proliferation was also examined. Results: STZ injection substantially decreased levels of GAD, GABA and insulin in pancreatic beta cells 12 h after injection; this was followed by an upsurge of phosphorylated mechanistic target of rapamycin (p-mTOR) in the alpha cells at day 1, and a significant increase in alpha cell mass at day 3. Treating STZ-injected mice with GABA largely restored the immunodetectable levels of insulin and GAD in the beta cells and significantly decreased the number of aldehyde dehydrogenase 1 family, member A3 (ALDH1a3)-positive cells, alpha cell mass and hyperglucagonaemia. STZ treatment also increased alpha cell proliferation in isolated islets, which was reversed by co-treatment with GABA. Muscimol, together with insulin, significantly lowered the level of cytosolic Ca2+ and p-mTOR, and decreased the proliferation rate of αTC1-6 cells. Conclusions/interpretation: GABA signalling critically controls the alpha cell population in pancreatic islets. Low intraislet GABA may contribute to alpha cell hyperplasia in early type 1 diabetes
The effects of disorder and interactions on the Anderson transition in doped Graphene
We undertake an exact numerical study of the effects of disorder on the
Anderson localization of electronic states in graphene. Analyzing the scaling
behaviors of inverse participation ratio and geometrically averaged density of
states, we find that Anderson metal-insulator transition can be introduced by
the presence of quenched random disorder. In contrast with the conventional
picture of localization, four mobility edges can be observed for the honeycomb
lattice with specific disorder strength and impurity concentration. Considering
the screening effects of interactions on disorder potentials, the experimental
findings of the scale enlarges of puddles can be explained by reviewing the
effects of both interactions and disorder.Comment: 7 pages, 7 figure
On the Ricci dark energy model
We study the Ricci dark energy model (RDE) which was introduced as an
alternative to the holographic dark energy model. We point out that an
accelerating phase of the RDE is that of a constant dark energy model. This
implies that the RDE may not be a new model of explaining the present
accelerating universe.Comment: 8 page
Spectrum of Curvature Perturbation of Multi-field Inflation with Small-Field Potential
In this paper, we have studied the spectrum of curvature perturbation of
multi-field inflation with general small-field potential. We assume that the
isocurvature perturbation may be neglected, and by using the Sasaki-Stewart
formalism, we found that the spectrum may be redder or bluer than of its
corresponding single field. The result depends upon the values of fields and
their effective masses at the horizon-crossing time. We discuss the relevant
cases.Comment: 8 pages, no figure, to publish in JCA
Linear-Optical Implementation of Perfect Discrimination between Single-bit Unitary Operations
Discrimination of unitary operations is a fundamental quantum information
processing task. Assisted with linear optical elements, we experimentally
demonstrate perfect discrimination between single-bit unitary operations using
two methods--sequential scheme and parallel scheme. The complexity and resource
consumed in these two schemes are analyzed and compared.Comment: 10 pages, 3 figure
Optical realization of universal quantum cloning
Beyond the no-cloning theorem, the universal symmetric quantum cloning
machine was first addressed by Buzek and Hillery. Here, we realized the
one-to-two qubits Buzek-Hillery cloning machine with linear optical devices.
This method relies on the representation of several qubits by a single photon.
We showed that, the fidelities between the two output qubits and the original
qubit are both 5/6 (which proved to be the optimal fidelity of one-to-two
qubits universal cloner) for arbitrary input pure states.Comment: 5 Pages, 2 Figure
The macro-behavior of agents' opinion under the influence of an external field
In this paper, a model about the evolution of opinion on small world networks
is proposed. We studied the macro-behavior of the agents' opinion and the
relative change rate as time elapses. The external field was found to play an
important role in making the opinion balance or increase, and without
the influence of the external field, the relative change rate shows
a nonlinear increasing behavior as time runs. What's more, this nonlinear
increasing behavior is independent of the initial condition, the strength of
the external field and the time that we cancel the external field. Maybe the
results can reflect some phenomenon in our society, such as the function of the
macro-control in China or the Mass Media in our society.Comment: 8 pages, 3 figure
- …