631 research outputs found
Amygdala and fusiform gyrus temporal dynamics: Responses to negative facial expressions
<p>Abstract</p> <p>Background</p> <p>The amygdala habituates in response to repeated human facial expressions; however, it is unclear whether this brain region habituates to schematic faces (i.e., simple line drawings or caricatures of faces). Using an fMRI block design, 16 healthy participants passively viewed repeated presentations of schematic and human neutral and negative facial expressions. Percent signal changes within anatomic regions-of-interest (amygdala and fusiform gyrus) were calculated to examine the temporal dynamics of neural response and any response differences based on face type.</p> <p>Results</p> <p>The amygdala and fusiform gyrus had a within-run "U" response pattern of activity to facial expression blocks. The initial block within each run elicited the greatest activation (relative to baseline) and the final block elicited greater activation than the preceding block. No significant differences between schematic and human faces were detected in the amygdala or fusiform gyrus.</p> <p>Conclusion</p> <p>The "U" pattern of response in the amygdala and fusiform gyrus to facial expressions suggests an initial orienting, habituation, and activation recovery in these regions. Furthermore, this study is the first to directly compare brain responses to schematic and human facial expressions, and the similarity in brain responses suggest that schematic faces may be useful in studying amygdala activation.</p
Structural study of GaSb/AlSb strained-layer superlattice
Owing to the lattice mismatch between GaSb and AlSb, a superlattice consisting of alternating layers of these materials will be strained. We have carried out ion-channeling measurements by backscattering of 1.76-MeV He ions, and present an experimental procedure and a data-analysis technique to measure the difference in strain between the two individual layers of the superlattice. The data analysis is based on computer simulations of channeling, the accuracy of which is supported by the many fine details of the experiments reproduced in the simulations. X-ray rocking-curve analysis yielded detailed profiles of strains in directions perpendicular and parallel to the surface. The x-ray value for the strain present at an unirradiated spot on the crystal is in excellent agreement with the value calculated by elasticity theory. In the bombarded region, the values of strain are less than the value calculated by elasticity theory. It appears that bombardment by the He ions reduced the strain by 50% and created lateral inhomogeneities in the crystal structure
Interacting multi-channel topological boundary modes in a quantum Hall valley system
Symmetry and topology play key roles in the identification of phases of
matter and their properties. Both concepts are central to understanding quantum
Hall ferromagnets (QHFMs), two-dimensional electronic phases with spontaneously
broken spin or pseudospin symmetry whose wavefunctions also have topological
properties. Domain walls between distinct broken symmetry QHFM phases are
predicted to host gapless one-dimensional (1D) modes that emerge due to a
topological change of the underlying electronic wavefunctions at such
interfaces. Although a variety of QHFMs have been identified in different
materials, probing interacting electronic modes at these domain walls has not
yet been accomplished. Here we use a scanning tunneling microscope (STM) to
directly visualize the spontaneous formation of boundary modes, within a
sign-changing topological gap, at domain walls between different
valley-polarized quantum Hall phases on the surface of bismuth. By changing the
valley occupation and the corresponding number of modes at the domain wall, we
can realize different regimes where the valley-polarized channels are either
metallic or develop a spectroscopic gap. This behavior is a consequence of
Coulomb interactions constrained by the symmetry-breaking valley flavor, which
determines whether electrons in the topological modes can backscatter, making
these channels a unique class of interacting Luttinger liquids
Brexit and the everyday politics of emotion: methodological lessons from history
The 2016 European Union referendum campaign has been depicted as a battle between ‘heads’ and ‘hearts’, reason and emotion. Voters’ propensity to trust their feelings over expert knowledge has sparked debate about the future of democratic politics in what is increasingly believed to be an ‘age of emotion’. In this article, we argue that we can learn from the ways that historians have approached the study of emotions and everyday politics to help us make sense of this present moment. Drawing on William Reddy’s concept of ‘emotional regimes’, we analyse the position of emotion in qualitative, ‘everyday narratives’ about the 2016 European Union referendum. Using new evidence from the Mass Observation Archive, we argue that while reason and emotion are inextricable facets of political decision-making, citizens themselves understand the two processes as distinct and competing
Ecological expected utility and the mythical neural code
Neural spikes are an evolutionarily ancient innovation that remains nature’s unique mechanism for rapid, long distance information transfer. It is now known that neural spikes sub serve a wide variety of functions and essentially all of the basic questions about the communication role of spikes have been answered. Current efforts focus on the neural communication of probabilities and utility values involved in decision making. Significant progress is being made, but many framing issues remain. One basic problem is that the metaphor of a neural code suggests a communication network rather than a recurrent computational system like the real brain. We propose studying the various manifestations of neural spike signaling as adaptations that optimize a utility function called ecological expected utility
Recommended from our members
Measurement of the underground atmospheric muon charge ratio using the MINOS Near Detector
The magnetized MINOS Near Detector, at a depth of 225 mwe, is used to measure the atmospheric muon charge ratio. The ratio of observed positive to negative atmospheric muon rates, using 301 days of data, is measured to be 1.266±0.001(stat)_(-0.014)^(+0.015)(syst). This measurement is consistent with previous results from other shallow underground detectors and is 0.108±0.019(stat+syst) lower than the measurement at the functionally identical MINOS Far Detector at a depth of 2070 mwe. This increase in charge ratio as a function of depth is consistent with an increase in the fraction of muons arising from kaon decay for increasing muon surface energie
Effective and Asymptotic Critical Exponents of Weakly Diluted Quenched Ising Model: 3d Approach Versus -Expansion
We present a field-theoretical treatment of the critical behavior of
three-dimensional weakly diluted quenched Ising model. To this end we analyse
in a replica limit n=0 5-loop renormalization group functions of the
-theory with O(n)-symmetric and cubic interactions (H.Kleinert and
V.Schulte-Frohlinde, Phys.Lett. B342, 284 (1995)). The minimal subtraction
scheme allows to develop either the -expansion series or to
proceed in the 3d approach, performing expansions in terms of renormalized
couplings. Doing so, we compare both perturbation approaches and discuss their
convergence and possible Borel summability. To study the crossover effect we
calculate the effective critical exponents providing a local measure for the
degree of singularity of different physical quantities in the critical region.
We report resummed numerical values for the effective and asymptotic critical
exponents. Obtained within the 3d approach results agree pretty well with
recent Monte Carlo simulations. -expansion does not allow
reliable estimates for d=3.Comment: 35 pages, Latex, 9 eps-figures included. The reference list is
refreshed and typos are corrected in the 2nd versio
Recommended from our members
Search for sterile neutrino mixing in the MINOS long-baseline experiment
A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×10^(20) protons on target in which neutrinos of energies between ∼500 MeV and 120 GeV are produced predominantly as ν_μ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ν_μ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles θ_(24) and θ_(34) are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime τ_3/m_3>2.1×10^(-12) s/eV at 90% C.L
Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector
The energy dependence of the neutrino-iron and antineutrino-iron inclusive
charged-current cross sections and their ratio have been measured using a
high-statistics sample with the MINOS Near Detector exposed to the NuMI beam
from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were
determined using a low hadronic energy subsample of charged-current events. We
report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy
range 3-50 GeV (5-50 GeV) with precision of 2-8% (3-9%) and their ratio which
is measured with precision 2-8%. The data set spans the region from low energy,
where accurate measurements are sparse, up to the high-energy scaling region
where the cross section is well understood.Comment: accepted by PR
- …