1,393 research outputs found

    Cosmological weak lensing with the HST GEMS survey

    Full text link
    We present our cosmic shear analysis of GEMS, one of the largest wide-field surveys ever undertaken by the Hubble Space Telescope. Imaged with the Advanced Camera for Surveys (ACS), GEMS spans 795 square arcmin in the Chandra Deep Field South. We detect weak lensing by large-scale structure in high resolution F606W GEMS data from ~60 resolved galaxies per square arcminute. We measure the two-point shear correlation function, the top-hat shear variance and the shear power spectrum, performing an E/B mode decomposition for each statistic. We show that we are not limited by systematic errors and use our results to place joint constraints on the matter density parameter Omega_m and the amplitude of the matter power spectrum sigma_8. We find sigma_8(Omega_m/0.3)^{0.65}=0.68 +/- 0.13 where the 1sigma error includes both our uncertainty on the median redshift of the survey and sampling variance. Removing image and point spread function (PSF) distortions are crucial to all weak lensing analyses. We therefore include a thorough discussion on the degree of ACS PSF distortion and anisotropy which we characterise directly from GEMS data. Consecutively imaged over 20 days, GEMS data also allows us to investigate PSF instability over time. We find that, even in the relatively short GEMS observing period, the ACS PSF ellipticity varies at the level of a few percent which we account for with a semi-time dependent PSF model. Our correction for the temporal and spatial variability of the PSF is shown to be successful through a series of diagnostic tests.Comment: 17 pages, 16 figures. Version accepted by MNRA

    Evolution of optically faint AGN from COMBO-17 and GEMS

    Full text link
    We have mapped the AGN luminosity function and its evolution between z=1 and z=5 down to apparent magnitudes of R<24R<24. Within the GEMS project we have analysed HST-ACS images of many AGN in the Extended Chandra Deep Field South, enabling us to assess the evolution of AGN host galaxy properties with cosmic time.Comment: to appear in proceedings 'Multiwavelength AGN Surveys', Cozumel 200

    GEMS: The Size Evolution of Disk Galaxies

    Full text link
    We combine HST imaging from the GEMS survey with photometric redshifts from COMBO-17 to explore the evolution of disk-dominated galaxies since z<1.1. The sample is comprised of all GEMS galaxies with Sersic indices n<2.5, derived from fits to the galaxy images. We account fully for selection effects through careful analysis of image simulations; we are limited by the depth of the redshift and HST data to the study of galaxies with absolute magnitudes M(V)10. We find strong evolution in the magnitude-size scaling relation for galaxies with M(V)<-20, corresponding to a brightening of 1 mag per sqarcsec in rest-frame V-band by z=1. Yet, disks at a given absolute magnitude are bluer and have lower stellar mass-to-light ratios at z=1 than at the present day. As a result, our findings indicate weak or no evolution in the relation between stellar mass and effective disk size for galaxies with log(M)>10 over the same time interval. This is strongly inconsistent with the most naive theoretical expectation, in which disk size scales in proportion to the halo virial radius, which would predict that disks are a factor of two denser at fixed mass at z=1. The lack of evolution in the stellar mass-size relation is consistent with an ``inside-out'' growth of galaxy disks on average (galaxies increasing in size as they grow more massive), although we cannot rule out more complex evolutionary scenarios.Comment: 22 pages, 16 figures, submitted to Ap

    The Relation Between Quasar and Merging Galaxy Luminosity Functions and the Merger-Induced Star Formation Rate of the Universe

    Full text link
    Using a model for self-regulated growth of black holes (BHs) in mergers involving gas-rich galaxies, we study the relationship between quasars and the population of merging galaxies and predict the merger-induced star formation rate density of the Universe. Mergers drive nuclear gas inflows, fueling starbursts and 'buried quasars' until accretion feedback expels the gas, rendering a briefly visible optical quasar. Star formation is shut down and accretion declines, leaving a passively evolving remnant with properties typical of red, elliptical galaxies. Based on evolution of these events in our simulations, we demonstrate that the observed statistics of merger rates, luminosity functions (LFs) and mass functions, SFR distributions, specific SFRs, quasar and quasar host galaxy LFs, and elliptical/red galaxy LFs are self-consistent and follow from one another as predicted by the merger hypothesis. We use our simulations to de-convolve both quasar and merging galaxy LFs to determine the birthrate of black holes of a given final mass and merger rates as a function of stellar mass. We use this to predict the merging galaxy LF in several observed wavebands, color-magnitude relations, mass functions, absolute and specific SFR distributions and SFR density, and quasar host galaxy LFs, as a function of redshift from z=0-6. We invert this and predict e.g. quasar LFs from observed merger LFs or SFR distributions. Our results agree well with observations, but idealized models of quasar lightcurves are ruled out by comparison of merger and quasar observations at >99.9% confidence. Using only observations of quasars, we estimate the contribution of mergers to the SFR density of the Universe even to high redshifts z~4.Comment: 26 pages, 15 figures, matches version accepted to Ap

    The effect of galaxy mass ratio on merger--driven starbursts

    Full text link
    We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger--driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disk galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local Universe. We find that the merger--driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger--driven star formation and test that it is insensitive to uncertainties in the feedback parameterization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disk and suppresses merger--driven star formation for large mass ratio mergers. Direct, co--planar merging orbits produce the largest tidal disturbance and yield that most intense burst of star formation. Contrary to naive expectations, a more compact distribution of gas or an increased gas fraction both decrease the burst efficiency. Owing to the efficient feedback model and the newer version of SPH employed here, the burst efficiencies of the mergers presented here are smaller than in previous studies.Comment: 26 pages, 21 figures, submitted to MNRA

    Linear/circular spectropolarimetry of diffuse interstellar bands

    Full text link
    Context. The identification of the carriers of diffuse interstellar bands (DIBs) remains one of the long-standing mysteries in astronomy. The detection of a polarisation signal in a DIB profile can be used to distinguish between a dust or gas-phase carrier. The polarisation profile can give additional information on the grain or molecular properties of the absorber. In order to detect and measure the linear and circular polarisation of the DIBs we observed reddened lines of sight showing continuum polarisation. For this study we selected two stars HD 197770 and HD 194279. We used high-resolution (R~64.000) spectropolarimetry in the wavelength range from 3700 to 10480 Angstrom with the ESPaDOnS echelle spectrograph mounted at the CFHT. Results. High S/N and high resolution Stokes V (circular), Q and U (linear) spectra were obtained. We constrained upper limits by a factor of 10 for previously observed DIBs. Furthermore, we analysed ~30 additional DIBs for which no spectropolarimetry data has been obtained before. This included the 9577 A DIB and the 8621 A DIB. Conclusions. The lack of polarisation in 45 DIB profiles suggests that none of the absorption lines is induced by a grain-type carrier. The strict upper limits, less than ~0.01%, derived for the observed lines-of-sight imply that if DIBs are due to gas-phase molecules these carriers have polarisation efficiencies which are at least 6 times, and up to 300 times, smaller than those predicted for grain-related carriers.Comment: 6 pages + 13 pages online material, submitted to A&

    Atomic and molecular interstellar absorption lines toward the high galactic latitude stars HD~141569 and HD~157841 at ultra-high resolution

    Get PDF
    We present ultra-high resolution (0.32 km/s) spectra obtained with the 3.9m Anglo-Australian Telescope (AAT) and Ultra-High-Resolution Facility (UHRF), of interstellar NaI D1, D2, Ca II K, K I and CH absorption toward two high galactic latitude stars HD141569 and HD157841. We have compared our data with 21-cm observations obtained from the Leiden/Dwingeloo HI survey. We derive the velocity structure, column densities of the clouds represented by the various components and identify the clouds with ISM structures seen in the region at other wavelengths. We further derive abundances, linear depletions and H2 fractional abundances for these clouds, wherever possible. Toward HD141569, we detect two components in our UHRF spectra : a weak, broad component at - 15 km/s, seen only in CaII K absorption and another component at 0 km/s, seen in NaI D1, D2, Ca II K, KI and CH absorption. In the case of the HD157841 sightline, a total of 6 components are seen on our UHRF spectra in NaI D1, D2 Ca II K, K I and CH absorption. 2 of these 6 components are seen only in a single species.Comment: 16 pages, Latex, 4 figures, ps files Astrophysical Journal (in press

    A systematic approach to the Planck LFI end-to-end test and its application to the DPC Level 1 pipeline

    Full text link
    The Level 1 of the Planck LFI Data Processing Centre (DPC) is devoted to the handling of the scientific and housekeeping telemetry. It is a critical component of the Planck ground segment which has to strictly commit to the project schedule to be ready for the launch and flight operations. In order to guarantee the quality necessary to achieve the objectives of the Planck mission, the design and development of the Level 1 software has followed the ESA Software Engineering Standards. A fundamental step in the software life cycle is the Verification and Validation of the software. The purpose of this work is to show an example of procedures, test development and analysis successfully applied to a key software project of an ESA mission. We present the end-to-end validation tests performed on the Level 1 of the LFI-DPC, by detailing the methods used and the results obtained. Different approaches have been used to test the scientific and housekeeping data processing. Scientific data processing has been tested by injecting signals with known properties directly into the acquisition electronics, in order to generate a test dataset of real telemetry data and reproduce as much as possible nominal conditions. For the HK telemetry processing, validation software have been developed to inject known parameter values into a set of real housekeeping packets and perform a comparison with the corresponding timelines generated by the Level 1. With the proposed validation and verification procedure, where the on-board and ground processing are viewed as a single pipeline, we demonstrated that the scientific and housekeeping processing of the Planck-LFI raw data is correct and meets the project requirements.Comment: 20 pages, 7 figures; this paper is part of the Prelaunch status LFI papers published on JINST: http://www.iop.org/EJ/journal/-page=extra.proc5/jins

    Evolution and Impact of Bars over the Last Eight Billion Years: Early Results from GEMS

    Full text link
    Bars drive the dynamical evolution of disk galaxies by redistributing mass and angular momentum, and they are ubiquitous in present-day spirals. Early studies of the Hubble Deep Field reported a dramatic decline in the rest-frame optical bar fraction f_opt to below 5% at redshifts z>0.7, implying that disks at these epochs are fundamentally different from present-day spirals. The GEMS bar project, based on ~8300 galaxies with HST-based morphologies and accurate redshifts over the range 0.2-1.1, aims at constraining the evolution and impact of bars over the last 8 Gyr. We present early results indicating that f_opt remains nearly constant at ~30% over the range z=0.2-1.1,corresponding to lookback times of ~2.5-8 Gyr. The bars detected at z>0.6 are primarily strong with ellipticities of 0.4-0.8. Remarkably, the bar fraction and range of bar sizes observed at z>0.6 appear to be comparable to the values measured in the local Universe for bars of corresponding strengths. Implications for bar evolution models are discussed.Comment: Submitted June 25, 2004. 10 pages 5 figures. To appear in Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork Strikes a New Note, eds. D. Block, K. Freeman, R. Groess, I. Puerari, & E.K. Block (Dordrecht: Kluwer), in pres
    • 

    corecore