27 research outputs found

    Dynamical formation of correlations in a Bose-Einstein condensate

    Full text link
    We consider the evolution of NN bosons interacting with a repulsive short range pair potential in three dimensions. The potential is scaled according to the Gross-Pitaevskii scaling, i.e. it is given by N2V(N(xixj))N^2V(N(x_i-x_j)). We monitor the behavior of the solution to the NN-particle Schr\"odinger equation in a spatial window where two particles are close to each other. We prove that within this window a short scale interparticle structure emerges dynamically. The local correlation between the particles is given by the two-body zero energy scattering mode. This is the characteristic structure that was expected to form within a very short initial time layer and to persist for all later times, on the basis of the validity of the Gross-Pitaevskii equation for the evolution of the Bose-Einstein condensate. The zero energy scattering mode emerges after an initial time layer where all higher energy modes disperse out of the spatial window. We can prove the persistence of this structure up to sufficiently small times before three-particle correlations could develop.Comment: 36 pages, latex fil

    CABeRNET: a Cytoscape app for augmented Boolean models of gene regulatory NETworks

    Get PDF
    Background. Dynamical models of gene regulatory networks (GRNs) are highly effective in describing complex biological phenomena and processes, such as cell differentiation and cancer development. Yet, the topological and functional characterization of real GRNs is often still partial and an exhaustive picture of their functioning is missing. Motivation. We here introduce CABeRNET, a Cytoscape app for the generation, simulation and analysis of Boolean models of GRNs, specifically focused on their augmentation when a only partial topological and functional characterization of the network is available. By generating large ensembles of networks in which user-defined entities and relations are added to the original core, CABeRNET allows to formulate hypotheses on the missing portions of real networks, as well to investigate their generic properties, in the spirit of complexity science. Results. CABeRNET offers a series of innovative simulation and modeling functions and tools, including (but not being limited to) the dynamical characterization of the gene activation patterns ruling cell types and differentiation fates, and sophisticated robustness assessments, as in the case of gene knockouts. The integration within the widely used Cytoscape framework for the visualization and analysis of biological networks, makes CABeRNET a new essential instrument for both the bioinformatician and the computational biologist, as well as a computational support for the experimentalist. An example application concerning the analysis of an augmented T-helper cell GRN is provided.Comment: 18 pages, 3 figure
    corecore