1,195 research outputs found

    Multi-class classification for semantic labeling of places

    Full text link
    Human robot interaction is an emerging area of research, where human understandable robotic representations can play a major role. Knowledge of semantic labels of places can be used to effectively communicate with people and to develop efficient navigation solutions in complex environments. In this paper, we propose a new approach that enables a robot to learn and classify observations in an indoor environment using a labeled semantic grid map, which is similar to an Occupancy Grid like representation. Classification of the places based on data collected by laser range finder (LRF) is achieved through a machine learning approach, which implements logistic regression as a multi-class classifier. The classifier output is probabilistically fused using independent opinion pool strategy. Appealing experimental results are presented based on a data set gathered in various indoor scenarios. ©2010 IEEE

    Laser range data based semantic labeling of places

    Full text link
    Extending metric space representations of an environment with other high level information, such as semantic and topological representations enable a robotic device to efficiently operate in complex environments. This paper proposes a methodology for a robot to classify indoor environments into semantic categories. Classification task, using data collected from a laser range finder, is achieved by a machine learning approach based on the logistic regression algorithm. The classification is followed by a probabilistic temporal update of the semantic labels of places. The innovation here is that the new algorithm is able to classify parts of a single laser scan into different semantic labels rather than the conventional approach of gross categorization of locations based on the whole laser scan. We demonstrate the effectiveness of the algorithm using a data set available in the public domain. ©2010 IEEE

    A new feature parametrization for monocular SLAM using line features

    Full text link
    © 2014 Cambridge University Press. This paper presents a new monocular SLAM algorithm that uses straight lines extracted from images to represent the environment. A line is parametrized by two pairs of azimuth and elevation angles together with the two corresponding camera centres as anchors making the feature initialization relatively straightforward. There is no redundancy in the state vector as this is a minimal representation. A bundle adjustment (BA) algorithm that minimizes the reprojection error of the line features is developed for solving the monocular SLAM problem with only line features. A new map joining algorithm which can automatically optimize the relative scales of the local maps is used to combine the local maps generated using BA. Results from both simulations and experimental datasets are used to demonstrate the accuracy and consistency of the proposed BA and map joining algorithms

    Semantic grid map building

    Full text link
    Conventional Occupancy Grid (OG) map which contains occupied and unoccupied cells can be enhanced by incorporating semantic labels of places to build semantic grid map. Map with semantic information is more understandable to humans and hence can be used for efficient communication, leading to effective human robot interactions. This paper proposes a new approach that enables a robot to explore an indoor environment to build an occupancy grid map and then perform semantic labeling to generate a semantic grid map. Geometrical information is obtained by classifying the places into three different semantic classes based on data collected by a 2D laser range finder. Classification is achieved by implementing logistic regression as a multi-class classifier, and the results are combined in a probabilistic framework. Labeling accuracy is further improved by topological correction on robot position map which is an intermediate product, and also by outlier removal process on semantic grid map. Simulation on data collected in a university environment shows appealing results

    Linear SLAM: Linearising the SLAM problems using submap joining

    Full text link
    © 2018 Elsevier Ltd The main contribution of this paper is a new submap joining based approach for solving large-scale Simultaneous Localization and Mapping (SLAM) problems. Each local submap is independently built using the local information through solving a small-scale SLAM; the joining of submaps mainly involves solving linear least squares and performing nonlinear coordinate transformations. Through approximating the local submap information as the state estimate and its corresponding information matrix, judiciously selecting the submap coordinate frames, and approximating the joining of a large number of submaps by joining only two maps at a time, either sequentially or in a more efficient Divide and Conquer manner, the nonlinear optimization process involved in most of the existing submap joining approaches is avoided. Thus the proposed submap joining algorithm does not require initial guess or iterations since linear least squares problems have closed-form solutions. The proposed Linear SLAM technique is applicable to feature-based SLAM, pose graph SLAM and D-SLAM, in both two and three dimensions, and does not require any assumption on the character of the covariance matrices. Simulations and experiments are performed to evaluate the proposed Linear SLAM algorithm. Results using publicly available datasets in 2D and 3D show that Linear SLAM produces results that are very close to the best solutions that can be obtained using full nonlinear optimization algorithm started from an accurate initial guess. The C/C++ and MATLAB source codes of Linear SLAM are available on OpenSLAM

    C-LOG: A Chamfer Distance based method for localisation in occupancy grid-maps

    Full text link
    In this paper, the problem of localising a robot within a known two-dimensional environment is formulated as one of minimising the Chamfer Distance between the corresponding occupancy grid map and information gathered from a sensor such as a laser range finder. It is shown that this nonlinear optimisation problem can be solved efficiently and that the resulting localisation algorithm has a number of attractive characteristics when compared with the conventional particle filter based solution for robot localisation in occupancy grids. The proposed algorithm is able to perform well even when robot odometry is unavailable, insensitive to noise models and does not critically depend on any tuning parameters. Experimental results based on a number of public domain datasets as well as data collected by the authors are used to demonstrate the effectiveness of the proposed algorithm. © 2013 IEEE

    Linear SFM: A hierarchical approach to solving structure-from-motion problems by decoupling the linear and nonlinear components

    Full text link
    © 2018 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) This paper presents a novel hierarchical approach to solving structure-from-motion (SFM) problems. The algorithm begins with small local reconstructions based on nonlinear bundle adjustment (BA). These are then joined in a hierarchical manner using a strategy that requires solving a linear least squares optimization problem followed by a nonlinear transform. The algorithm can handle ordered monocular and stereo image sequences. Two stereo images or three monocular images are adequate for building each initial reconstruction. The bulk of the computation involves solving a linear least squares problem and, therefore, the proposed algorithm avoids three major issues associated with most of the nonlinear optimization algorithms currently used for SFM: the need for a reasonably accurate initial estimate, the need for iterations, and the possibility of being trapped in a local minimum. Also, by summarizing all the original observations into the small local reconstructions with associated information matrices, the proposed Linear SFM manages to preserve all the information contained in the observations. The paper also demonstrates that the proposed problem formulation results in a sparse structure that leads to an efficient numerical implementation. The experimental results using publicly available datasets show that the proposed algorithm yields solutions that are very close to those obtained using a global BA starting with an accurate initial estimate. The C/C++ source code of the proposed algorithm is publicly available at https://github.com/LiangZhaoPKUImperial/LinearSFM

    Grid-based scan-to-map matching for accurate 2D map building

    Full text link
    © 2016 Taylor & Francis and The Robotics Society of Japan. This paper presents a grid-based scan-to-map matching technique for accurate 2D map building. At every acquisition of a new scan, the proposed technique matches the new scan to the previous scan similarly to the conventional techniques, but further corrects the error by matching the new scan to the globally defined map. In order to achieve best scan-to-map matching at each acquisition, the map is represented as a grid map with multiple normal distributions (NDs) in each cell, which is one contribution of this paper. Additionally, the new scan is also represented by NDs, developing a novel ND-to-ND matching technique. This ND-to-ND matching technique has significant potential in the enhancement of the global matching as well as the computational efficiency. Experimental results first show that the proposed technique accumulates very small errors after consecutive matchings and identifies that the scans are matched better to the map with the multi-ND representation than one ND representation. The proposed technique is then tested in a number of large indoor environments, including public domain datasets and the applicability to real world problems is demonstrated

    An extended Kalman filter for localisation in occupancy grid maps

    Full text link
    © 2015 IEEE. The main contribution of this paper is an extended Kalman filter (EKF) based framework for mobile robot localisation in occupancy grid maps (OGMs), when the initial location is approximately known. We propose that the observation equation be formulated using the unsigned distance transform based Chamfer Distance (CD) that corresponds to a laser scan placed within the OGM, as a constraint. This formulation provides an alternative to the ray-casting model, which generally limited localisation in OGMs to Particle Filter (PF) based frameworks that can efficiently deal with observation models that are not analytic. Usage of an EKF is attractive due to its computational efficiency, especially as it can be applied to modern day field robots with limited on-board computing power. Furthermore, well-developed tools for dealing with potential outliers in the observations or changes to the motion model, exists in the EKF framework. The effectiveness of the proposed algorithm is demonstrated using a number of simulation and real life examples, including one in a dynamic environment populated with people
    • …
    corecore