21 research outputs found

    Rehabilitation and release of marine mammals in the United States : risks and benefits

    Get PDF
    Author Posting. © Society for Marine Mammalogy, 2007. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Marine Mammal Science 23 (2007): 731-750, doi:10.1111/j.1748-7692.2007.00146.x.Rehabilitation of stranded marine mammals elicits polarized attitudes: initially done alongside display collections, but release of rehabilitated animals has become more common. Justifications include animal welfare, management of beach use conflict, research, conservation, and public education. Rehabilitation cost and risks have been identified which vary in degree supported by data rather than perception. These include conflict with fisheries for resources, ignorance of recipient population ecology, poor understanding of long term survival, support of the genetically not-so-fit, introduction of novel or antibiotic resistant pathogens, harm to human health and cost. Thus facilities must balance their welfare appeal against public education, habitat restoration, human impact reduction, and other conservation activities. Benefits to rehabilitating marine mammals are the opportunity to support the welfare of disabled animals and to publish good science and so advance our understanding of wild populations. In specific cases, the status of a population may make conservation the main reason for rehabilitation. These three reasons for rehabilitation lead to contrasting, and sometimes conflicting, management needs. We therefore outline a decision tree for rehabilitation managers using criteria for each management decision, based on welfare, logistics, conservation, research and funding to define limits on the number of animals released to the wild

    Additional records of metazoan parasites from Caribbean marine mammals, including genetically identified anisakid nematodes

    Get PDF
    Studies of marine mammal parasites in the Caribbean are scarce. An assessment for marine mammal endo- and ectoparasites from Puerto Rico and the Virgin Islands, but extending to other areas of the Caribbean, was conducted between 1989 and 1994. The present study complements the latter and enhances identification of anisakid nematodes using molecular markers. Parasites were collected from 59 carcasses of stranded cetaceans and manatees from 1994 to 2006, including Globicephala macrorhynchus, Kogia breviceps, Kogia sima, Lagenodelphis hosei, Mesoplodon densirostris, Peponocephala electra, Stenella longirostris, Steno bredanensis, Trichechus manatus. Tursiops truncatus, and Ziphius cavirostris. Sixteen species of endoparasitic helminthes were morphologically identified, including two species of acanthocephalans (Bolbosoma capitatum, Bolbosoma vasculosum), nine species of nematodes (Anisakis sp., Anisakis brevispiculata, Anisakis paggiae, Anisakis simplex, Anisakis typica, Anisakis ziphidarium, Crassicauda anthonyi, Heterocheilus tunicatus, Pseudoterranova ceticola), two species of cestodes (Monorygma grimaldi, Phyllobothrium delphini), and three species of trematodes (Chiorchis groschafti, Pulmonicola cochleotrema, Monoligerum blairi). The nematodes belonging to the genus Anisakis recovered in some stranded animals were genetically identified to species level based on their sequence analysis of mitochondrial DNA (629 bp of mtDNA cox 2). A total of five new host records and six new geographic records are presented.L'articolo è disponibile sul sito dell'editore http://www.springerlink.com

    Influenza A Viruses from Wild Birds in Guatemala Belong to the North American Lineage

    Get PDF
    The role wild bird species play in the transmission and ecology of avian influenza virus (AIV) is well established; however, there are significant gaps in our understanding of the worldwide distribution of these viruses, specifically about the prevalence and/or significance of AIV in Central and South America. As part of an assessment of the ecology of AIV in Guatemala, we conducted active surveillance in wild birds on the Pacific and Atlantic coasts. Cloacal and tracheal swab samples taken from resident and migratory wild birds were collected from February 2007 to January 2010.1913 samples were collected and virus was detected by real time RT-PCR (rRT-PCR) in 28 swab samples from ducks (Anas discors). Virus isolation was attempted for these positive samples, and 15 isolates were obtained from the migratory duck species Blue-winged teal. The subtypes identified included H7N9, H11N2, H3N8, H5N3, H8N4, and H5N4. Phylogenetic analysis of the viral sequences revealed that AIV isolates are highly similar to viruses from the North American lineage suggesting that bird migration dictates the ecology of these viruses in the Guatemalan bird population

    Weather-Corrected Performance Ratio

    No full text
    Photovoltaic (PV) system performance depends on both the quality of the system and the weather. One simple way to communicate the system performance is to use the performance ratio (PR): the ratio of the electricity generated to the electricity that would have been generated if the plant consistently converted sunlight to electricity at the level expected from the DC nameplate rating. The annual system yield for flat-plate PV systems is estimated by the product of the annual insolation in the plane of the array, the nameplate rating of the system, and the PR, which provides an attractive way to estimate expected annual system yield. Unfortunately, the PR is, again, a function of both the PV system efficiency and the weather. If the PR is measured during the winter or during the summer, substantially different values may be obtained, making this metric insufficient to use as the basis for a performance guarantee when precise confidence intervals are required. This technical report defines a way to modify the PR calculation to neutralize biases that may be introduced by variations in the weather, while still reporting a PR that reflects the annual PR at that site given the project design and the project weather file. This resulting weather-corrected PR gives more consistent results throughout the year, enabling its use as a metric for performance guarantees while still retaining the familiarity this metric brings to the industry and the value of its use in predicting actual annual system yield. A testing protocol is also presented to illustrate the use of this new metric with the intent of providing a reference starting point for contractual content
    corecore