1,996 research outputs found

    Een matematisch model van de grondwaterstromingen in het kwartaire reservoir ten oosten van De Haan

    Get PDF
    A mathematical model has been developed to simulate groundwater flow in the Quaternary aquifer system east of De Haan (Belgium). The estimated lateral variations of the hydraulic parameters have repeatedly been adjusted by comparing the calculated hydraulic-head configuration to the observed one. After this calibration of the model was achieved, the influence of groundwater extraction has been examined. Even at pumping rates as low as 250.000 m³/year, artificial replenishment of the aquifer system will be necessary in order to avoid flow of salt water towards the wells

    In vivo analysis of the Escherichia coli ultrastructure by small-angle scattering

    Get PDF
    The flagellated Gram-negative bacterium Escherichia coli is one of the most studied microorganisms. Despite extensive studies as a model prokaryotic cell, the ultrastructure of the cell envelope at the nanometre scale has not been fully elucidated. Here, a detailed structural analysis of the bacterium using a combination of small-angle X-ray and neutron scattering (SAXS and SANS, respectively) and ultra-SAXS (USAXS) methods is presented. A multiscale structural model has been derived by incorporating well established concepts in soft-matter science such as a core-shell colloid for the cell body, a multilayer membrane for the cell wall and self-avoiding polymer chains for the flagella. The structure of the cell envelope was resolved by constraining the model by five different contrasts from SAXS, and SANS at three contrast match points and full contrast. This allowed the determination of the membrane electron-density profile and the inter-membrane distances on a quantitative scale. The combination of USAXS and SAXS covers size scales from micrometres down to nanometres, enabling the structural elucidation of cells from the overall geometry down to organelles, thereby providing a powerful method for a noninvasive investigation of the ultrastructure. This approach may be applied for probing in vivo the effect of detergents, antibiotics and antimicrobial peptides on the bacterial cell wall

    Conservation of Helical Bundle Structure between the Exocyst Subunits

    Get PDF
    Background: The exocyst is a large hetero-octomeric protein complex required for regulating the targeting and fusion of secretory vesicles to the plasma membrane in eukaryotic cells. Although the sequence identity between the eight different exocyst subunits is less than 10%, structures of domains of four of the subunits revealed a similar helical bundle topology. Characterization of several of these subunits has been hindered by lack of soluble protein for biochemical and structural studies. Methodology/Principal Findings: Using advanced hidden Markov models combined with secondary structure predictions, we detect significant sequence similarity between each of the exocyst subunits, indicating that they all contain helical bundle structures. We corroborate these remote homology predictions by identifying and purifying a predicted domain of yeast Sec10p, a previously insoluble exocyst subunit. This domain is soluble and folded with approximately 60 % a-helicity, in agreement with our predictions, and capable of interacting with several known Sec10p binding partners. Conclusions/Significance: Although all eight of the exocyst subunits had been suggested to be composed of similar helical bundles, this has now been validated by our hidden Markov model structure predictions. In addition, these predictions identified protein domains within the exocyst subunits, resulting in creation and characterization of a soluble, folde

    Bacillus anthracis diversity in Kruger National Park [South Africa]

    Get PDF
    The Kruger National Park (KNP), South Africa, has a recorded history of periodic anthrax epidemics causing widespread disease among wild animals. Bacillus anthracis is the causative agent of anthrax, a disease primarily affecting ungulate herbivores. Worldwide there is little diversity among B. anthracis isolates, but examination of variable-number tandem repeat (VNTR) loci has identified six major clones, with the most dissimilar types split into the A and B branches. Both the A and B types are found in southern Africa, giving this region the greatest genetic diversity of B. anthracis worldwide. Consequently, southern Africa has been hypothesized to be the geographic origin of B. anthracis. In this study, the genotypic types of 98 KNP B. anthracis isolates were identified using multiple-locus VNTR analysis. Two major types are evident, the A branch and the B branch. The spatial and temporal distribution of the different genotypes indicates that anthrax epidemic foci are independent, though correlated through environmental cues. Kruger B isolates were found on significantly higher-calcium and higher-pH soils than were Kruger type A. This relationship between genotype and soil chemistry may be due to adaptive differences among divergent anthrax strains. While this association may be simply fortuitous, adaptation of A types to diverse environmental conditions is consistent with their greater geographic dispersal and genetic dissimilarity

    Marshall University Music Department Presents the Faculty Woodwind Quintet

    Get PDF
    https://mds.marshall.edu/music_perf/1079/thumbnail.jp

    Marshall University Music Department Presents the Marshall Faculty Woodwind Quintet

    Get PDF
    https://mds.marshall.edu/music_perf/1091/thumbnail.jp

    Applying ecosystem services for pre‐market environmental risk assessments of regulated stressors

    Get PDF
    Ecosystem services (ES ) are the benefits that people obtain from ecosystems. Investigating the environment through an ES framework has gained wide acceptance in the international scientific community and is applied by policymakers to protect biodiversity and safeguard the sustainability of ecosystems. This approach can enhance the ecological and societal relevance of pre‐market/prospective environmental risk assessments (ERA s) of regulated stressors by: (1) informing the derivation of operational protection goals; (2) enabling the integration of environmental and human health risk assessments; (3) facilitating horizontal integration of policies and regulations; (4) leading to more comprehensive and consistent environmental protection; (5) articulating the utility of, and trade‐offs involved in, environmental decisions; and (6) enhancing the transparency of risk assessment results and the decisions based upon them. Realisation of these advantages will require challenges that impede acceptance of an ES approach to be overcome. Particularly, there is concern that, if biodiversity only matters to the extent that it benefits humans, the intrinsic value of nature is ignored. Moreover, our understanding of linkages among ecological components and the processes that ultimately deliver ES is incomplete, valuing ES is complex, and there is no standard ES lexicon and limited familiarity with the approach. To help overcome these challenges, we encourage: (1) further research to establish biodiversity–ES relationships; (2) the development of approaches that (i) quantitatively translate responses to chemical stressors by organisms and groups of organisms to ES delivery across different spatial and temporal scales, (ii) measure cultural ES and ease their integration into ES valuations, and (iii) appropriately value changes in ES delivery so that trade‐offs among different management options can be assessed; (3) the establishment of a standard ES lexicon; and (4) building capacity in ES science and how to apply ES to ERA s. These development needs should not prevent movement towards implementation of an ES approach in ERA s, as the advantages we perceive of using this approach render it more than worthwhile to tackle those challenges. Society and the environment stand to benefit from this shift in how we conduct the ERA of regulated stressors
    corecore