6,514 research outputs found

    Dynamics of the entanglement spectrum in spin chains

    Full text link
    We study the dynamics of the entanglement spectrum, that is the time evolution of the eigenvalues of the reduced density matrices after a bipartition of a one-dimensional spin chain. Starting from the ground state of an initial Hamiltonian, the state of the system is evolved in time with a new Hamiltonian. We consider both instantaneous and quasi adiabatic quenches of the system Hamiltonian across a quantum phase transition. We analyse the Ising model that can be exactly solved and the XXZ for which we employ the time-dependent density matrix renormalisation group algorithm. Our results show once more a connection between the Schmidt gap, i.e. the difference of the two largest eigenvalues of the reduced density matrix and order parameters, in this case the spontaneous magnetisation.Comment: 16 pages, 8 figures, comments are welcome! Version published in JSTAT special issue on "Quantum Entanglement In Condensed Matter Physics

    Entanglement detection in hybrid optomechanical systems

    Full text link
    We study a device formed by a Bose Einstein condensate (BEC) coupled to the field of a cavity with a moving end-mirror and find a working point such that the mirror-light entanglement is reproduced by the BEC-light quantum correlations. This provides an experimentally viable tool for inferring mirror-light entanglement with only a limited set of assumptions. We prove the existence of tripartite entanglement in the hybrid device, persisting up to temperatures of a few milli-Kelvin, and discuss a scheme to detect it.Comment: 6 pages, 7 figures, published versio

    Cavity-aided quantum parameter estimation in a bosonic double-well Josephson junction

    Get PDF
    We describe an apparatus designed to make non-demolition measurements on a Bose-Einstein condensate (BEC) trapped in a double-well optical cavity. This apparatus contains, as well as the bosonic gas and the trap, an optical cavity. We show how the interaction between the light and the atoms, under appropriate conditions, can allow for a weakly disturbing yet highly precise measurement of the population imbalance between the two wells and its variance. We show that the setting is well suited for the implementation of quantum-limited estimation strategies for the inference of the key parameters defining the evolution of the atomic system and based on measurements performed on the cavity field. This would enable {\it de facto} Hamiltonian diagnosis via a highly controllable quantum probe.Comment: 8 pages, 5 figures, RevTeX4; Accepted for publication in Phys. Rev.

    Myringotomy and ventilation tube insertion with endoscopic or microscopic technique in adults: a pilot study

    Get PDF
    The purpose of this study is to assess the feasibility of endoscopic-assisted myringotomy and ventilation tube insertion in adults affected by chronic otitis media with effusion, comparing the outcomes of this approach with those obtained with the traditional microscopic technique. Twenty-four patients were enrolled in this trial and alternately assigned to 2 groups of 12 subjects each. In group A, patients underwent myringotomy and ventilation tube insertion under endoscopic view, whereas in group B, the same procedure was performed traditionally using a microscope. All cases were evaluated 1 week after surgery and then monthly until tube extrusion. Type A tympanogram was achieved in 10 of 13 ears in both groups (76.92%). No significant difference in operative times or complication rates was observed (P > .05). Endoscopic technique could be a viable alternative to the microscopic approach for myringotomy and ventilation tube positioning in adults affected by chronic otitis media with effusion

    Thermal and quantum fluctuations in chains of ultracold polar molecules

    Full text link
    Ultracold polar molecules, in highly anisotropic traps and interacting via a repulsive dipolar potential, may form one-dimensional chains at high densities. According to classical theory, at low temperatures there exists a critical value of the density at which a second order phase transition from a linear to a zigzag chain occurs. We study the effect of thermal and quantum fluctuations on these self-organized structures using classical and quantum Monte Carlo methods, by means of which we evaluate the pair correlation function and the static structure factor. Depending on the parameters, these functions exhibit properties typical of a crystalline or of a liquid system. We compare the thermal and the quantum results, identifying analogies and differences. Finally, we discuss experimental parameter regimes where the effects of quantum fluctuations on the linear - zigzag transition can be observed.Comment: Submitted to the Special issue on modern applications of trapped ions, J. Phys. B: At. Mol. Opt. Phy

    Optimal two-qubit gate for generation of random bipartite entanglement

    Get PDF
    We numerically study protocols consisting of repeated applications of two qubit gates used for generating random pure states. A necessary number of steps needed in order to generate states displaying bipartite entanglement typical of random states is obtained. For generic two qubit entangling gate the decay rate of purity is found to scale as n\sim n and therefore of order n2\sim n^2 steps are necessary to reach random bipartite entanglement. We also numerically identify the optimal two qubit gate for which the convergence is the fastest. Perhaps surprisingly, applying the same good two qubit gate in addition to a random single qubit rotations at each step leads to a faster generation of entanglement than applying a random two qubit transformation at each step.Comment: 9 pages, 9 PS figures; published versio

    Early clinical predictors and correlates of long-term morbidity in bipolar disorder

    Get PDF
    OBJECTIVES: Identifying factors predictive of long-term morbidity should improve clinical planning limiting disability and mortality associated with bipolar disorder (BD). METHODS: We analyzed factors associated with total, depressive and mania-related long-term morbidity and their ratio D/M, as %-time ill between a first-lifetime major affective episode and last follow-up of 207 BD subjects. Bivariate comparisons were followed by multivariable linear regression modeling. RESULTS: Total % of months ill during follow-up was greater in 96 BD-II (40.2%) than 111 BD-I subjects (28.4%; P=0.001). Time in depression averaged 26.1% in BD-II and 14.3% in BD-I, whereas mania-related morbidity was similar in both, averaging 13.9%. Their ratio D/M was 3.7-fold greater in BD-II than BD-I (5.74 vs. 1.96; P<0.0001). Predictive factors independently associated with total %-time ill were: [a] BD-II diagnosis, [b] longer prodrome from antecedents to first affective episode, and [c] any psychiatric comorbidity. Associated with %-time depressed were: [a] BD-II diagnosis, [b] any antecedent psychiatric syndrome, [c] psychiatric comorbidity, and [d] agitated/psychotic depressive first affective episode. Associated with %-time in mania-like illness were: [a] fewer years ill and [b] (hypo)manic first affective episode. The long-term D/M morbidity ratio was associated with: [a] anxious temperament, [b] depressive first episode, and [c] BD-II diagnosis. CONCLUSIONS: Long-term depressive greatly exceeded mania-like morbidity in BD patients. BD-II subjects spent 42% more time ill overall, with a 3.7-times greater D/M morbidity ratio, than BD-I. More time depressed was predicted by agitated/psychotic initial depressive episodes, psychiatric comorbidity, and BD-II diagnosis. Longer prodrome and any antecedent psychiatric syndrome were respectively associated with total and depressive morbidity
    corecore