1,701 research outputs found
Non-invasive, multichromatic eye oximeter Final report
Optical eye oximeter for measuring oxygen of choroidal blood for monitoring brain oxygen suppl
Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector
The Hamamatsu R11410-21 photomultiplier tube is the photodetector of choice
for the XENON1T dual-phase time projection chamber. The device has been
optimized for a very low intrinsic radioactivity, a high quantum efficiency and
a high sensitivity to single photon detection. A total of 248 tubes are
currently operated in XENON1T, selected out of 321 tested units. In this
article the procedures implemented to evaluate the large number of tubes prior
to their installation in XENON1T are described. The parameter distributions for
all tested tubes are shown, with an emphasis on those selected for XENON1T, of
which the impact on the detector performance is discussed. All photomultipliers
have been tested in a nitrogen atmosphere at cryogenic temperatures, with a
subset of the tubes being tested in gaseous and liquid xenon, simulating their
operating conditions in the dark matter detector. The performance and
evaluation of the tubes in the different environments is reported and the
criteria for rejection of PMTs are outlined and quantified.Comment: 24 pages, 16 figure
Qualification Tests of the R11410-21 Photomultiplier Tubes for the XENON1T Detector
The Hamamatsu R11410-21 photomultiplier tube is the photodetector of choice for the XENON1T dual-phase time projection chamber. The device has been optimized for a very low intrinsic radioactivity, a high quantum efficiency and a high sensitivity to single photon detection. A total of 248 tubes are currently operated in XENON1T, selected out of 321 tested units. In this article the procedures implemented to evaluate the large number of tubes prior to their installation in XENON1T are described. The parameter distributions for all tested tubes are shown, with an emphasis on those selected for XENON1T, of which the impact on the detector performance is discussed. All photomultipliers have been tested in a nitrogen atmosphere at cryogenic temperatures, with a subset of the tubes being tested in gaseous and liquid xenon, simulating their operating conditions in the dark matter detector. The performance and evaluation of the tubes in the different environments is reported and the criteria for rejection of PMTs are outlined and quantified
Constraints on jet quenching in p-Pb collisions at root s(NN)=5.02 TeV measured by the event-activity dependence of semi-inclusive hadron-jet distributions
CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTĂFICO E TECNOLĂGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAĂĂO DE AMPARO Ă PESQUISA DO ESTADO DE SĂO PAULOThe ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high-transverse momentum trigger hadron in p-Pb collisions at root s(NN) = 5.02TeV. Jets are reconstructed from charged-particle tracks using the anti-k(T) algorithm with resolution parameter R = 0.2 and 0.4. A data-driven statistical approach is used to correct the uncorrelated background jet yield. Recoil jet distributions are reported for jet transverse momentum 15 < p(T,jet)(ch) < 50 GeV/c and are compared in various intervals of p-Pb event activity, based on charged-particle multiplicity and zero-degree neutral energy in the forward (Pb-going) direction. The semi-inclusive observable is self-normalized and such comparisons do not require the interpretation of p-Pb event activity in terms of collision geometry, in contrast to inclusive jet observables. These measurements provide new constraints on the magnitude of jet quenching in small systems at the LHC. In p-Pb collisions with high event activity, the average medium-induced out-of-cone energy transport for jets with R = 0.4 and 15 < p(T,jet)(ch) < 50 GeV/c is measured to be less than 0.4 GeV/c at 90% confidence, which is over an order of magnitude smaller than a similar measurement for central Pb-Pb collisions at root s(NN) = 2.76 TeV. Comparison is made to theoretical calculations of jet quenching in small systems, and to inclusive jet measurements in p-Pb collisions selected by event activity at the LHC and in d-Au collisions at RHIC.78395113CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTĂFICO E TECNOLĂGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAĂĂO DE AMPARO Ă PESQUISA DO ESTADO DE SĂO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTĂFICO E TECNOLĂGICOFINEP - FINANCIADORA DE ESTUDOS E PROJETOSFAPESP - FUNDAĂĂO DE AMPARO Ă PESQUISA DO ESTADO DE SĂO PAULOSem informaçãoSem informaçãoSem informaçãoAgĂȘncias de fomento estrangeiras apoiaram essa pesquisa, mais informaçÔes acesse artig
Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at 1as = 13 TeV
Two-particle angular correlations are measured in high-multiplicity proton-proton collisions at s = 13 TeV by the ALICE Collaboration. The yields of particle pairs at short-( 06\u3b7 3c 0) and long-range (1.6 < | 06\u3b7| < 1.8) in pseudorapidity are extracted on the near-side ( 06\u3c6 3c 0). They are reported as a function of transverse momentum (pT) in the range 1 < pT< 4 GeV/c. Furthermore, the event-scale dependence is studied for the first time by requiring the presence of high-pT leading particles or jets for varying pT thresholds. The results demonstrate that the long-range \u201cridge\u201d yield, possibly related to the collective behavior of the system, is present in events with high-pT processes as well. The magnitudes of the short- and long-range yields are found to grow with the event scale. The results are compared to EPOS LHC and PYTHIA 8 calculations, with and without string-shoving interactions. It is found that while both models describe the qualitative trends in the data, calculations from EPOS LHC show a better quantitative agreement for the pT dependency, while overestimating the event-scale dependency. [Figure not available: see fulltext.
Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions
At sufficiently high temperature and energy density, nuclear matter undergoes a transition to a phase in which quarks and gluons are not confined: the quark-gluon plasma (QGP)(1). Such an exotic state of strongly interacting quantum chromodynamics matter is produced in the laboratory in heavy nuclei high-energy collisions, where an enhanced production of strange hadrons is observed(2-6). Strangeness enhancement, originally proposed as a signature of QGP formation in nuclear collisions(7), is more pronounced for multi-strange baryons. Several effects typical of heavy-ion phenomenology have been observed in high-multiplicity proton-proton (pp) collisions(8,9), but the enhanced production of multi-strange particles has not been reported so far. Here we present the first observation of strangeness enhancement in high-multiplicity proton-proton collisions. We find that the integrated yields of strange and multi-strange particles, relative to pions, increases significantly with the event charged-particle multiplicity. The measurements are in remarkable agreement with the p-Pb collision results(10,11), indicating that the phenomenon is related to the final system created in the collision. In high-multiplicity events strangeness production reaches values similar to those observed in Pb-Pb collisions, where a QGP is formed.Peer reviewe
Search for a common baryon source in high-multiplicity pp collisions at the LHC
We report on the measurement of the size of the particle-emitting source from two-baryon correlations with ALICE in high-multiplicity pp collisions at s=13 TeV. The source radius is studied with low relative momentum pâp, pâŸâpâŸ, pâÎ, and pâŸâÎ⟠pairs as a function of the pair transverse mass mT considering for the first time in a quantitative way the effect of strong resonance decays. After correcting for this effect, the radii extracted for pairs of different particle species agree. This indicates that protons, antiprotons, Î s, and Î⟠s originate from the same source. Within the measured mT range (1.1â2.2) GeV/c2the invariant radius of this common source varies between 1.3 and 0.85 fm. These results provide a precise reference for studies of the strong hadronâhadron interactions and for the investigation of collective properties in small colliding systems. © 2020 CERN for the benefit of the ALICE CollaborationPeer reviewe
Observation of flow angle and flow magnitude fluctuations in Pb-Pb collisions at sNN=5.02TeV at the CERN Large Hadron Collider
This Letter reports on the first measurements of transverse momentum dependent flow angle n and flow magnitude vn fluctuations determined using new four-particle correlators. The measurements are performed for various centralities in PbâPb collisions at a center-of-mass energy per nucleon pair of âs NN = 5.02 TeV with ALICE at the CERN Large Hadron Collider. Both flow angle and flow magnitude fluctuations are observed in the presented centrality ranges and are strongest in the most central collisions and for a transverse momentum pT > 2 GeV/c. Comparison with theoretical models, including iEBE-VISHNU, MUSIC, and AMPT, show that the measurements exhibit unique sensitivities to the initial state of heavy-ion collisions
- âŠ