472 research outputs found
Geological and geophysical investigation of Kamil crater, Egypt
We detail the Kamil crater (Egypt) structure and refine the impact scenario, based
on the geological and geophysical data collected during our first expedition in February
2010. Kamil Crater is a model for terrestrial small-scale hypervelocity impact craters. It is an
exceptionally well-preserved, simple crater with a diameter of 45 m, depth of 10 m, and rayed
pattern of bright ejecta. It occurs in a simple geological context: flat, rocky desert surface, and
target rocks comprising subhorizontally layered sandstones. The high depth-to-diameter ratio
of the transient crater, its concave, yet asymmetric, bottom, and the fact that Kamil Crater is not part of a crater field confirm that it formed by the impact of a single iron mass (or a tight cluster of fragments) that fragmented upon hypervelocity impact with the ground. The circular crater shape and asymmetries in ejecta and shrapnel distributions coherently indicate a direction of incidence from the NW and an impact angle of approximately 30 to 45 . Newly
identified asymmetries, including the off-center bottom of the transient crater floor downrange, maximum overturning of target rocks along the impact direction, and lower crater rim elevation downrange, may be diagnostic of oblique impacts in well-preserved craters. Geomagnetic data reveal no buried individual impactor masses >100 kg and suggest that the total mass of the buried shrapnel >100 g is approximately 1050â1700 kg. Based on this mass value plus that of shrapnel >10 g identified earlier on the surface during systematic search, the new estimate of the minimum projectile mass is approximately 5 t.Published1842â18683.8. Geofisica per l'ambienteJCR Journalrestricte
Massive binary black holes in galactic nuclei and their path to coalescence
Massive binary black holes form at the centre of galaxies that experience a
merger episode. They are expected to coalesce into a larger black hole,
following the emission of gravitational waves. Coalescing massive binary black
holes are among the loudest sources of gravitational waves in the Universe, and
the detection of these events is at the frontier of contemporary astrophysics.
Understanding the black hole binary formation path and dynamics in galaxy
mergers is therefore mandatory. A key question poses: during a merger, will the
black holes descend over time on closer orbits, form a Keplerian binary and
coalesce shortly after? Here we review progress on the fate of black holes in
both major and minor mergers of galaxies, either gas-free or gas-rich, in
smooth and clumpy circum-nuclear discs after a galactic merger, and in
circum-binary discs present on the smallest scales inside the relic nucleus.Comment: Accepted for publication in Space Science Reviews. To appear in hard
cover in the Space Sciences Series of ISSI "The Physics of Accretion onto
Black Holes" (Springer Publisher
Numerical modeling of the impact of pump wavelength on Yb-doped fiber amplifier performance
Ytterbium-doped optical amplifiers have become common tools for industrial applications due to their high efficiency, relatively low cost and potentially very high output power level. The efficiency of an ytterbium-doped fiber amplifier depends mainly on the absorption of pump radiation, and, therefore, optimum pump wavelengths have been proposed such as 915 nm. However, the semiconductor pump diodes batch supplied by manufacturers may exhibit a spread in the output wavelength. This paper theoretically investigates the performance of Yb-doped amplifiers for different pump wavelengths and defines the pump power penalty when the pump source does not emit at the optimum wavelength. The penalty has been defined as normalized excess pump power required to achieve the desired gain
Supermassive Black Hole Binaries: The Search Continues
Gravitationally bound supermassive black hole binaries (SBHBs) are thought to
be a natural product of galactic mergers and growth of the large scale
structure in the universe. They however remain observationally elusive, thus
raising a question about characteristic observational signatures associated
with these systems. In this conference proceeding I discuss current theoretical
understanding and latest advances and prospects in observational searches for
SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat
Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed.
C.Sopuerta (Berlin: Springer-Verlag
Direct photon production in d+Au collisions at sqrt(s_NN)=200 GeV
Direct photons have been measured in sqrt(s_NN)=200 GeV d+Au collisions at
midrapidity. A wide p_T range is covered by measurements of nearly-real virtual
photons (1<p_T<6 GeV/c) and real photons (5<p_T<16 GeV/c). The invariant yield
of the direct photons in d+Au collisions over the scaled p+p cross section is
consistent with unity. Theoretical calculations assuming standard cold nuclear
matter effects describe the data well for the entire p_T range. This indicates
that the large enhancement of direct photons observed in Au+Au collisions for
1.0<p_T<2.5 GeV/c is due to a source other than the initial-state nuclear
effects.Comment: 547 authors, 7 pages, 4 figures. Submitted to Phys. Rev. Lett.. Plain
text data tables for the points plotted in figures for this and previous
PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Search for the W-exchange decays B0 --> Ds(*)- Ds(*)+
We report a search for the decays , , in a sample of 232
million decays to \BBb ~pairs collected with the \babar detector
at the PEP-II asymmetric-energy storage ring. We find no significant
signal and set upper bounds for the branching fractions: and at 90% confidence level.Comment: 8 pages, 2 figures, submitted to PRD-R
- âŠ