186 research outputs found
Understanding voltage decay in lithium-excess layered cathode materials through oxygen-centred structural arrangement
Lithium-excess 3d-transition-metal layered oxides (Li1+xNiyCozMn1-x-y-zO2, > 250 mAh g(-1)) suffer from severe voltage decay upon cycling, which decreases energy density and hinders further research and development. Nevertheless, the lack of understanding on chemical and structural uniqueness of the material prevents the interpretation of internal degradation chemistry. Here, we discover a fundamental reason of the voltage decay phenomenon by comparing ordered and cation-disordered materials with a combination of X-ray absorption spectroscopy and transmission electron microscopy studies. The cation arrangement determines the transition metal-oxygen covalency and structural reversibility related to voltage decay. The identification of structural arrangement with de-lithiated oxygen-centred octahedron and interactions between octahedrons affecting the oxygen stability and transition metal mobility of layered oxide provides the insight into the degradation chemistry of cathode materials and a way to develop high-energy density electrodes
Thermal plasma synthesis of Li2S nanoparticles for application in lithium-sulfur batteries
Abstract : Inductively-coupled thermal plasma processes were used to produce nanosized Li2S. Prior to the syntheses, the feasibility of forming Li2S was first evaluated using FactSage by considering the phase diagrams of sulfur and different lithium precursors in reducing atmospheres; Li2O, LiOH·H2O, Li2CO3 and Li2SO4·H2O all showed promises in producing Li2S nanoparticles, as confirmed by experiments. Argon and hydrogen mixtures were used as plasma gases, and a carbothermal reduction was implemented for Li2SO4·H2O. In addition, carbon-coated Li2S nanoparticles were synthesized with downstream injection of methane. Carbon was shown to stabilize Li2S upon contact with ambient air. The Li2S nanoparticles were electrochemically tested in half-cells using electrolytes containing LiNO3 or Li2S6 as additives. It was found that adding LiNO3 to the electrolyte was detrimental to the electrochemical performance of Li2S, whereas the combination of Li2S6 and LiNO3 as additives doubled the charge and discharge capacities of the half-cell over 10 cycles
An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox
Authors acknowledge financial support from the National Natural Science Foundation of China (51822210), the Australian Research Council (ARC) for its support through Discover Project (DP 140100193),Shenzhen Peacock Plan (KQJSCX20170331161244761), the Program for Guangdong Innovative and Entrepreneurial Teams (No. 2017ZT07C341), and the Development and Reform Commission of Shenzhen Municipality for the development of the “Low-Dimensional Materials and Devices” discipline.The growing demand for advanced lithium-ion batteries calls for the continued development of high-performance positive electrode materials. Polyoxyanion compounds are receiving considerable interest as alternative cathodes to conventional oxides due to their advantages in cost, safety and environmental friendliness. However, polyanionic cathodes reported so far rely heavily upon transition-metal redox reactions for lithium transfer. Here we show a polyanionic insertion material, Li2Fe(C2O4)2, in which in addition to iron redox activity, the oxalate group itself also shows redox behavior enabling reversible charge/discharge and high capacity without gas evolution. The current study gives oxalate a role as a family of cathode materials and suggests a direction for the identification and design of electrode materials with polyanionic frameworks.Publisher PDFPeer reviewe
Nanoarchitectured Array Electrodes for Rechargeable Lithium- and Sodium-Ion Batteries
Rechargeable ion batteries have contributed immensely to shaping the modern world and been seriously considered for the efficient storage and utilization of intermittent renewable energies. To fulfill their potential in the future market, superior battery performance of high capacity, great rate capability, and long lifespan is undoubtedly required. In the past decade, along with discovering new electrode materials, the focus has been shifting more and more toward rational electrode designs because the performance is intimately connected to the electrode architectures, particularly their designs at the nanoscale that can alleviate the reliance on the materials' intrinsic nature. The utilization of nanoarchitectured arrays in the design of electrodes has been proven to significantly improve the battery performance. A comprehensive summary of the structural features and fabrications of the nanoarchitectured array electrodes is provided, and some of the latest achievements in the area of both lithium‐ and sodium‐ion batteries are highlighted. Finally, future challenges and opportunities that would allow further development of such advanced electrode configuration are discussed
Na‐ion Batteries
This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of the batteries and the recent research, showing a possible alternative to classical electrolytes – with the development of ionic liquid-based electrolytes – is also explored. Cycling performance in NIB is also strongly associated with the quality of the electrode-electrolyte interface, where electrolyte degradation takes place; thus, Na-ion Batteries details the recent achievements in furthering knowledge of this interface. Finally, as the ultimate goal is commercialization of this new electrical storage technology, the last chapters are dedicated to the industrial point of view, given by two startup companies, who developed two different NIB chemistries for complementary applications and markets
β-lactoglobulin as a molecular carrier of linoleate: characterisation and effects on intestinal epithelial cells in vitro
S. Le Maux is currently supported by a Teagasc Walsh Fellowship and the Department of Agriculture, Fisheries and Food (FIRM project 08/RD/TMFRC/650). We also acknowledge funding from IRCSET-Ulysses Travel Grant.peer-reviewedThe dairy protein β-lactoglobulin (βlg) is known to bind hydrophobic ligands such as fatty acids. In the present work, we investigated the biological activity in vitro of linoleate once complexed to bovine βlg. Binding of linoleate (C18:2) to bovine βlg was achieved by heating at 60 °C for 30 min at pH 7.4, resulting in a linoleate/βlg molar binding stoichiometry of 1.1, 2.1, and 3.4. Two types of binding sites were determined by ITC titrations. Binding of linoleate induced the formation of covalent dimers and trimers of βlg. The LD50 on Caco-2 cells after 24 h was 58 μM linoleate. However, cell viability was unaffected when 200 μM linoleate was presented to the Caco-2 cells as part of the βlg complex. The Caco-2 cells did not increase mRNA transcript levels of long chain fatty acid transport genes, FATP4 and FABPpm, or increase levels of the cAMP signal, in response to the presence of 50 μM linoleate alone or as part of the βlg complex. Therefore, it is proposed that βlg can act as a molecular carrier and alter the bioaccessibility of linoleate/linoleic acid
NiO[sub 2] Obtained by Electrochemical Lithium Deintercalation from Lithium Nickelate: Structural Modifications
- …
