641 research outputs found

    Impact of Dresselhaus vs. Rashba spin-orbit coupling on the Holstein polaron

    Full text link
    We utilize an exact variational numerical procedure to calculate the ground state properties of a polaron in the presence of Rashba and linear Dresselhaus spin-orbit coupling. We find that when the linear Dresselhaus spin-orbit coupling approaches the Rashba spin-orbit coupling, the Van-Hove singularity in the density of states will be shifted away from the bottom of the band and finally disappear when the two spin-orbit couplings are tuned to be equal. The effective mass will be suppressed; the trend will become more significant for low phonon frequency. The presence of two dominant spin-orbit couplings will make it possible to tune the effective mass with more varied observables.Comment: 6 pages, low resolution figure

    DC conductivity of twisted bilayer graphene: Angle-dependent transport properties and effects of disorder

    Full text link
    The in-plane DC conductivity of twisted bilayer graphene (TBLG) is calculated using an expansion of the real-space Kubo-Bastin conductivity in terms of Chebyshev polynomials. We investigate within a tight-binding (TB) approach the transport properties as a function of rotation angle, applied perpendicular electric field and vacancy disorder. We find that for high-angle twists, the two layers are effectively decoupled, and the minimum conductivity at the Dirac point corresponds to double the value observed in monolayer graphene. This remains valid even in the presence of vacancies, hinting that chiral symmetry is still preserved. On the contrary, for low twist angles, the conductivity at the Dirac point depends on the twist angle and is not protected in the presence of disorder. Furthermore, for low angles and in the presence of an applied electric field, we find that the chiral boundary states emerging between AB and BA regions contribute to the DC conductivity, despite the appearance of strongly localized states in the AA regions. The results agree with recent conductivity experiments on twisted bilayer graphene

    Disordered graphene Josephson junctions

    Full text link
    A tight-binding approach based on the Chebyshev-Bogoliubov-de Gennes method is used to describe disordered single-layer graphene Josephson junctions. Scattering by vacancies, ripples or charged impurities is included. We compute the Josephson current and investigate the nature of multiple Andreev reflections, which induce bound states appearing as peaks in the density of states for energies below the superconducting gap. In the presence of single atom vacancies, we observe a strong suppression of the supercurrent that is a consequence of strong inter-valley scattering. Although lattice deformations should not induce inter-valley scattering, we find that the supercurrent is still suppressed, which is due to the presence of pseudo-magnetic barriers. For charged impurities, we consider two cases depending on whether the average doping is zero, i.e. existence of electron-hole puddles, or finite. In both cases, short range impurities strongly affect the supercurrent, similar to the vacancies scenario

    Quantum mechanics of spin transfer in coupled electron-spin chains

    Full text link
    The manner in which spin-polarized electrons interact with a magnetized thin film is currently described by a semi-classical approach. This in turn provides our present understanding of the spin transfer, or spin torque phenomenon. However, spin is an intrinsically quantum mechanical quantity. Here, we make the first strides towards a fully quantum mechanical description of spin transfer through spin currents interacting with a Heisenberg-coupled spin chain. Because of quantum entanglement, this requires a formalism based on the density matrix approach. Our description illustrates how individual spins in the chain time-evolve as a result of spin transfer.Comment: 4 pages, 3 (colour) figure

    Topological phase transitions in small mesoscopic chiral p-wave superconductors

    Full text link
    Spin-triplet chiral p-wave superconductivity is typically described by a two-component order parameter, and as such is prone to unique emergent effects when compared to the standard single-component superconductors. Here we present the equilibrium phase diagram for small mesoscopic chiral p-wave superconducting disks in the presence of magnetic field, obtained by solving the microscopic Bogoliubov-de Gennes equations self-consistently. In the ultra-small limit, the cylindrically-symmetric giant-vortex states are the ground state of the system. However, with increasing sample size, the cylindrical symmetry is broken as the two components of the order parameter segregate into domains, and the number of fragmented domain walls between them characterizes the resulting states. Such domain walls are topological defects unique for the p-wave order, and constitute a dominant phase in the mesoscopic regime. Moreover, we find two possible types of domain walls, identified by their chirality-dependent interaction with the edge states

    Electronic properties of emergent topological defects in chiral pp-wave superconductivity

    Full text link
    Chiral pp-wave superconductors in applied magnetic field can exhibit more complex topological defects than just conventional superconducting vortices, due to the two-component order parameter (OP) and the broken time-reversal symmetry. We investigate the electronic properties of those exotic states, some of which contain clusters of one-component vortices in chiral components of the OP and/or exhibit skyrmionic character in the \textit{relative} OP space, all obtained as a self-consistent solution of the microscopic Bogoliubov-de Gennes equations. We reveal the link between the local density of states (LDOS) of the novel topological states and the behavior of the chiral domain wall between the OP components, enabling direct identification of those states in scanning tunneling microscopy. For example, a skyrmion always contains a closed chiral domain wall, which is found to be mapped exactly by zero-bias peaks in LDOS. Moreover, the LDOS exhibits electron-hole asymmetry, which is different from the LDOS of conventional vortex states with the same vorticity. Finally, we present the magnetic field and temperature dependence of the properties of a skyrmion, indicating that this topological defect can be surprisingly large in size, and can be pinned by an artificially indented non-superconducting closed path in the sample. These features are expected to facilitate the experimental observation of skyrmionic states, thereby enabling experimental verification of chirality in emerging superconducting materials

    Hidden Symmetries of Electronic Transport in a Disordered One-Dimensional Lattice

    Full text link
    Correlated, or extended, impurities play an important role in the transport properties of dirty metals. Here, we examine, in the framework of a tight-binding lattice, the transmission of a single electron through an array of correlated impurities. In particular we show that particles transmit through an impurity array in identical fashion, regardless of the direction of transversal. The demonstration of this fact is straightforward in the continuum limit, but requires a detailed proof for the discrete lattice. We also briefly demonstrate and discuss the time evolution of these scattering states, to delineate regions (in time and space) where the aforementioned symmetry is violated

    Field effect on surface states in a doped Mott-Insulator thin film

    Full text link
    Surface effects of a doped thin film made of a strongly correlated material are investigated both in the absence and presence of a perpendicular electric field. We use an inhomogeneous Gutzwiller approximation for a single band Hubbard model in order to describe correlation effects. For low doping, the bulk value of the quasiparticle weight is recovered exponentially deep into the slab, but with increasing doping, additional Friedel oscillations appear near the surface. We show that the inverse correlation length has a power-law dependence on the doping level. In the presence of an electrical field, considerable changes in the quasiparticle weight can be realized throughout the system. We observe a large difference (as large as five orders of magnitude) in the quasiparticle weight near the opposite sides of the slab. This effect can be significant in switching devices that use the surface states for transport
    corecore