82 research outputs found
Doping dependence of the lattice dynamics in Ba(FeCo)As studied by Raman spectroscopy
We report Raman scattering spectra of iron-pnictide superconductor
Ba(FeCo)As single crystals with varying cobalt content.
Upon cooling through the tetragonal-to-orthorhombic transition, we observe a
large splitting of the E in-plane phonon modes involving Fe and As
displacements. The splitting of the in-plane phonons at the transition is
strongly reduced upon doping and disappears for qualitatively
following the trend displayed by the Fe magnetic moment. The origin of the
splitting is discussed in terms of magnetic frustration inherent to
iron-pnictide systems and we argue that such enhanced splitting may be linked
to strong spin-phonon coupling.Comment: 6 pages, 6 figure
Computational modeling of uncertainty in time-domain electromagnetics
We discuss computationally efficient ways of accounting for the impact of uncertainty, e. g., lack of detailed knowledge about sources, materials, shapes, etc., in computational time-domain electromagnetics. In contrast to classic statistical Monte Carlo-based methods, we explore a probabilistic approach based on high-order accurate expansions of general stochastic processes. We show this to be highly efficient and accurate on both one- and two-dimensional examples, enabling the computation of global sensitivities of measures of interest, e. g., radar-cross-sections (RCS) in scattering applications, for a variety of types of uncertainties
High-Order Discontinuous Galerkin Methods for Computational Electromagnetics and Uncertainty Quantification
We discuss the basics of discontinuous Galerkin methods (DG) for CEM as an alternative of emerging importance to the widely used FDTD. The benefits of DG methods include geometric flexibility, high-order accuracy, explicit timeadvancement, and very high parallel performance for large scale applications. The performance of the scheme shall be illustrated by several examples. As an example of particular interest, we further explore efficient probabilistic ways of dealing with uncertainty and uncertainty quantification in electromagnetics applications. Whereas the discussion often draws on scattering applications, the techniques are applicable to general problems in CEM
The symmetry of charge order in cuprates
Charge-ordered ground states permeate the phenomenology of 3d-based
transition metal oxides, and more generally represent a distinctive hallmark of
strongly-correlated states of matter. The recent discovery of charge order in
various cuprate families fueled new interest into the role played by this
incipient broken symmetry within the complex phase diagram of high-Tc
superconductors. Here we use resonant X-ray scattering to resolve the main
characteristics of the charge-modulated state in two cuprate families: Bi2201
and YBCO. We detect no signatures of spatial modulations along the nodal
direction in Bi2201, thus clarifying the inter-unit-cell momentum-structure of
charge order. We also resolve the intra-unit-cell symmetry of the charge
ordered state, which is revealed to be best represented by a bond-order with
modulated charges on the O-2p orbitals and a prominent d-wave character. These
results provide insights on the microscopic description of charge order in
cuprates, and on its origin and interplay with superconductivity.Comment: A high-resolution version with supplementary material can be found
at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/CDW_symmetry.pd
Quantitative measurements and modeling of cargo–motor interactions during fast transport in the living axon
Author Posting. © IOP Publishing, 2012. This article is posted here by permission of IOP Publishing for personal use, not for redistribution. The definitive version was published in Physical Biology 9 (2012): 055005, doi:10.1088/1478-3975/9/5/055005.The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these—phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein—have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo–motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic terminal. The significance of this data and accompanying model pertains to the role transport plays in neuronal function, connectivity, and survival, and has implications in the pathogenesis of neurological disorders, such as Alzheimer's, Huntington and Parkinson's diseases.This work was supported in part by
NINDS RO1 NS046810 and RO1 NS062184 (ELB), NIGMS
RO1 GM47368 (ELB), the Physical Sciences in Oncology
Center grant U54CA143837 (VC), NIGMS K12GM088021
(JP), and NSF IGERT DGE-0549500 (PES). ELB and VC
also received pilot project funds from the UNM Center for
Spatiotemporal modeling, funded by NIGMS, P50GM08273,
which also supported AC.2013-09-2
A Measure-Theoretic Model for Collective Cell Migration and Aggregation
The aim of this paper is to present a measure-theoretic approach able to derive an Eulerian model of the dynamics of a cell population with a nite number of cells out of a microscopic Lagrangian description of the underlying cellular particle system. By looking at the spatial distribution of cells in terms of a time-evolving probability measure, rather than at individual cell paths, an ensemble representation of the cell colony is obtained, which can then
result either in discrete, continuous, or hybrid approaches according to the spatial structure of such a probability measure. Remarkably, such an approach does not call for any assumption on the number of cells taken into account, thus providing consistency of the same modeling framework across all levels of representation. In addition, it is suitable to cope with the often
ambiguous translation of microscopic arguments (i.e., cell dimensions and interaction radii) into macroscopic descriptions. The proposed approach, also extended to the case of multiple coexisting cell populations, is then tested with sample simulations that provide a useful sensitivity analysis of the model parameters
Two-scale Moving Boundary Dynamics of Cancer Invasion:Heterotypic Cell Populations Evolution in Heterogeneous ECM
This book contains a collection of original research articles and review articles that describe novel mathematical modeling techniques and the application of those techniques to models of cell motility in a variety of contexts. The aim is to highlight some of the recent mathematical work geared at understanding the coordination of intracellular processes involved in the movement of cells. This collection will benefit researchers interested in cell motility as well graduate students taking a topics course in this area.
- …