10 research outputs found

    Human cerebrovascular contractile receptors are upregulated via a B-Raf/MEK/ERK-sensitive signaling pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral ischemia results in a rapid increase in contractile cerebrovascular receptors, such as the 5-hydroxytryptamine type 1B (5-HT<sub>1B</sub>), angiotensin II type 1 (AT<sub>1</sub>), and endothelin type B (ET<sub>B</sub>) receptors, in the vessel walls within the ischemic region, which further impairs local blood flow and aggravates tissue damage. This receptor upregulation occurs via activation of the mitogen-activated protein kinase pathway. We therefore hypothesized an important role for B-Raf, the first signaling molecule in the pathway. To test our hypothesis, human cerebral arteries were incubated at 37°C for 48 h in the absence or presence of a B-Raf inhibitor: SB-386023 or SB-590885. Contractile properties were evaluated in a myograph and protein expression of the individual receptors and activated phosphorylated B-Raf (p-B-Raf) was evaluated immunohistochemically.</p> <p>Results</p> <p>5-HT<sub>1B</sub>, AT<sub>1</sub>, and ET<sub>B </sub>receptor-mediated contractions were significantly reduced by application of SB-590885, and to a smaller extent by SB-386023. A marked reduction in AT<sub>1 </sub>receptor immunoreactivity was observed after treatment with SB-590885. Treatment with SB-590885 and SB-386023 diminished the culture-induced increase of p-B-Raf immunoreactivity.</p> <p>Conclusions</p> <p>B-Raf signaling has a key function in the altered expression of vascular contractile receptors observed after organ culture. Therefore, specific targeting of B-Raf might be a novel approach to reduce tissue damage after cerebral ischemia by preventing the previously observed upregulation of contractile receptors in smooth muscle cells.</p

    Cytochrome P450 4A Isoform Inhibitory Profile of N-Hydroxy-N′-(4-butyl-2-methylphenyl)-formamidine (HET0016), a Selective Inhibitor of 20-HETE Synthesis

    No full text

    Molecular Mechanisms for Early Brain Injury After Subarachnoid Hemorrhage

    No full text
    corecore