196 research outputs found

    Clientelism as civil society? Unpacking the relationship between clientelism and democracy at the local level in South Africa

    Get PDF
    This article, building on analyses from the global south, attempts to reframe democratic expectations by considering where previously maligned practices such as clientelism may hold moments of democracy. It does so by comparing the theory of civil society with that of clientelism, and its African counterpart neo-patrimonialism. It argues that clientelism as civil society may fulfil democratic tasks such as holding the (local) state accountable, strengthening civil and political liberties and providing channels of access for previously marginalised groups. Clientelism is not necessarily a reflection of imposed power relations but, at times, can demonstrate a conscious political strategy, to generate development, on the part of its protagonists.IS

    Risk factors in patient safety: minimally invasive surgery versus conventional surgery

    Get PDF
    Background This study aimed to identify the frequency of events in the different patient safety risk domains during minimally invasive surgery (MIS) and conventional surgery (CS). Methods A convenience sample of gynecologic MIS and CS was observed. Events were observed and categorized into one of the predefined patient safety risk domains. Results A total of 53 procedures were observed: 26 CS and 27 MIS procedures. The general characteristics were comparable between the two groups. A large number of environmental events were observed, averaging one every 2.5 min. Technical events and events of an organizational nature occurred more often in MIS (P < 0.01) than in CS (P < 0.01). The relative risk for the occurrence of one or more technical events in MIS compared with CS was 1.7, and the risk for two or more technical events was 4.1. A time out according to protocol showed no relationship to the occurrence of the different types of patient safety-related events. Conclusion The technological complexity inherent in MIS makes this type of surgery more prone to technology-related problems than CS, even in a specially designed minimally invasive surgical suite. A regular time-out procedure developed for CS lacks the attention necessary for the complex technology used in MIS and therefore is insufficient for MIS procedures briefing. Incorporating a specially designed technology checklist in a regular briefing protocol could be a solution to decrease the number of events in MIS.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Search for short baseline nu(e) disappearance with the T2K near detector

    Get PDF
    8 pages, 6 figures, submitted to PRD rapid communication8 pages, 6 figures, submitted to PRD rapid communicationWe thank the J-PARC staff for superb accelerator performance and the CERN NA61 collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC and CFI, Canada; Commissariat `a l’Energie Atomique and Centre National de la Recherche Scientifique–Institut National de Physique Nucle´aire et de Physique des Particules, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; Russian Science Foundation, RFBR and Ministry of Education and Science, Russia; MINECO and European Regional Development Fund, Spain; Swiss National Science Foundation and State Secretariat for Education, Research and Innovation, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK. In addition participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; DOE Early Career program, USA

    Measurement of Muon Antineutrino Oscillations with an Accelerator-Produced Off-Axis Beam

    Get PDF
    T2K reports its first measurements of the parameters governing the disappearance of ν-μ in an off-axis beam due to flavor change induced by neutrino oscillations. The quasimonochromatic ν-μ beam, produced with a peak energy of 0.6 GeV at J-PARC, is observed at the far detector Super-Kamiokande, 295 km away, where the ν-μ survival probability is expected to be minimal. Using a data set corresponding to 4.01×1020 protons on target, 34 fully contained μ-like events were observed. The best-fit oscillation parameters are sin2(θ-23)=0.45 and |Δm-322|=2.51×10-3 eV2 with 68% confidence intervals of 0.38-0.64 and 2.26-2.80×10-3 eV2, respectively. These results are in agreement with existing antineutrino parameter measurements and also with the νμ disappearance parameters measured by T2K

    Measurement of double-differential muon neutrino charged-current interactions on C8 H8 without pions in the final state using the T2K off-axis beam

    Get PDF
    We report the measurement of muon neutrino charged-current interactions on carbon without pions in the final state at the T2K beam energy using 5.734×1020 protons on target. For the first time the measurement is reported as a flux-integrated, double-differential cross section in muon kinematic variables (cosθμ, pμ), without correcting for events where a pion is produced and then absorbed by final state interactions. Two analyses are performed with different selections, background evaluations and cross-section extraction methods to demonstrate the robustness of the results against biases due to model-dependent assumptions. The measurements compare favorably with recent models which include nucleon-nucleon correlations but, given the present precision, the measurement does not distinguish among the available models. The data also agree with Monte Carlo simulations which use effective parameters that are tuned to external data to describe the nuclear effects. The total cross section in the full phase space is σ=(0.417±0.047(syst)±0.005(stat))×10-38 cm2 nucleon-1 and the cross section integrated in the region of phase space with largest efficiency and best signal-over-background ratio (cosθμ\u3e0.6 and pμ\u3e200 MeV) is σ=(0.202±0.036(syst)±0.003(stat))×10-38 cm2 nucleon-1

    Measurement of νˉμ\bar{\nu}_{\mu} and νμ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(νμ+nucleusμ+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(νˉμ+nucleusμ++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(νˉ)σ(ν))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K νˉ/ν\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of θμ\theta_{\mu}500 MeV/c. The results are σ(νˉ)=(0.900±0.029(stat.)±0.088(syst.))×1039\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure

    Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target

    Get PDF
    111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA

    Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 pi(0) detector

    Get PDF
    10 pages, 6 figures, Submitted to PRDhttp://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.112010© 2015 American Physical Society11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PR

    Measurement of the muon neutrino inclusive charged-current cross section in the energy range of 1-3

    Get PDF
    We report a measurement of the νμ-nucleus inclusive charged-current cross section (=σcc) on iron using data from the INGRID detector exposed to the J-PARC neutrino beam. The detector consists of 14 modules in total, which are spread over a range of off-axis angles from 0° to 1.1°. The variation in the neutrino energy spectrum as a function of the off-axis angle, combined with event topology information, is used to calculate this cross section as a function of neutrino energy. The cross section is measured to be σcc(1.1 GeV)=1.10±0.15 (10-38 cm2/nucleon), σcc(2.0 GeV)=2.07±0.27 (10-38 cm2/nucleon), and σcc(3.3 GeV)=2.29±0.45 (10-38 cm2/nucleon), at energies of 1.1, 2.0, and 3.3 GeV, respectively. These results are consistent with the cross section calculated by the neutrino interaction generators currently used by T2K. More importantly, the method described here opens up a new way to determine the energy dependence of neutrino-nucleus cross sections
    corecore