457,308 research outputs found
Numerical analysis of the hydrodynamic behaviour of immiscible metallic alloys in twin-screw rheomixing process
A numerical analysis by a VOF method is presented for studying the hydrodynamic mechanisms of the rheomixing process by a twin-screw extruder (TSE). The simplified flow field is established based on a systematic analysis of flow features of immiscible alloys in TSE rheomixing process. The studies focus on the fundamental microstructure mechanisms of rheological behaviour in shear-induced turbulent flows. It is noted that the microstructure of immiscible alloys in the mixing process is strongly influenced by the interaction between droplets, which is controlled by shearing forces, viscosity ratio, turbulence, and shearing time. The numerical results show a good qualitative agreement with the experimental results, and are useful for further optimisation design of prototypical rheomixing processes
The Mechanism of Kuznetsov-Ma Breather
We discuss how to understand the dynamical process of Kuznetsov-Ma breather,
based on some basic physical mechanisms. It is shown that dynamical process of
Kuznetsov-Ma breather involves at least two distinctive mechanisms:
modulational instability, and the interference effects between a bright soliton
and a plane wave background. Our analysis indicates that modulational
instability plays dominant roles in mechanism of Kuznetsov-Ma breather
admitting weak perturbations, and the interference effect plays dominant role
for the Kuznetsov-Ma breather admitting strong perturbations. For intermediate
cases, the two mechanisms are both involved greatly. These characters provide a
possible way to understand the evolution of strong perturbations on a plane
wave background.Comment: 5 pages, 4 figure
Quantum state swapping via qubit network with Hubbard interaction
We study the quantum state transfer (QST) in a class of qubit network with
on-site interaction, which is described by the generalized Hubbard model with
engineered couplings. It is proved that the system of two electrons with
opposite spins in this quantum network of sites can be rigorously reduced
into one dimensional engineered single Bloch electron models with central
potential barrier. With this observation we find that such system can perform a
perfect QST, the quantum swapping between two distant electrons with opposite
spins. Numerical results show such QST and the resonant-tunnelling for the
optimal on-site interaction strengths.Comment: 4 pages, 3 figure
Microscopic processes during electron cyclotron resonance microwave nitrogen plasma-assisted molecular beam epitaxial growth of GaN/GaAs heterostructures: Experiments and kinetic modeling
A set of delta-GaNyAs1–y/GaAs strained-layer superlattices grown on GaAs (001) substrates by electron cyclotron resonance (ECR) microwave plasma-assisted molecular beam epitaxy (MBE) was characterized by ex situ high resolution X-ray diffraction (HRXRD) to determine nitrogen content y in the nitrided GaAs monolayers as a function of growth temperature T. A first order kinetic model is introduced to quantitatively explain this y(T) dependence in terms of an energetically favorable N for As anion exchange and thermally activated N-surface desorption and surface segregation processes. The nitrogen surface segregation process, with an estimated activation energy Es ~ 0.9 eV appears to be significant during the GaAs overgrowth of GaNyAs1–y layers, and is shown to be responsible for strong y(T) dependence
Evolving small-world networks with geographical attachment preference
We introduce a minimal extended evolving model for small-world networks which
is controlled by a parameter. In this model the network growth is determined by
the attachment of new nodes to already existing nodes that are geographically
close. We analyze several topological properties for our model both
analytically and by numerical simulations. The resulting network shows some
important characteristics of real-life networks such as the small-world effect
and a high clustering.Comment: 11 pages, 4 figure
Hole-Doped Cuprate High Temperature Superconductors
Hole-doped cuprate high temperature superconductors have ushered in the
modern era of high temperature superconductivity (HTS) and have continued to be
at center stage in the field. Extensive studies have been made, many compounds
discovered, voluminous data compiled, numerous models proposed, many review
articles written, and various prototype devices made and tested with better
performance than their nonsuperconducting counterparts. The field is indeed
vast. We have therefore decided to focus on the major cuprate materials systems
that have laid the foundation of HTS science and technology and present several
simple scaling laws that show the systematic and universal simplicity amid the
complexity of these material systems, while referring readers interested in the
HTS physics and devices to the review articles. Developments in the field are
mostly presented in chronological order, sometimes with anecdotes, in an
attempt to share some of the moments of excitement and despair in the history
of HTS with readers, especially the younger ones.Comment: Accepted for publication in Physica C, Special Issue on
Superconducting Materials; 27 pages, 2 tables, 30 figure
- …
