54,810 research outputs found
Gait Verification using Knee Acceleration Signals
A novel gait recognition method for biometric applications is proposed. The approach has the following distinct features. First, gait patterns are determined via knee acceleration signals, circumventing difficulties associated with conventional vision-based gait recognition methods. Second, an automatic procedure to extract gait features from acceleration signals is developed that employs a multiple-template classification method. Consequently, the proposed approach can adjust the sensitivity and specificity of the gait recognition system with great flexibility. Experimental results from 35 subjects demonstrate the potential of the approach for successful recognition. By setting sensitivity to be 0.95 and 0.90, the resulting specificity ranges from 1 to 0.783 and 1.00 to 0.945, respectively
Phases and phase stabilities of Fe3X alloys (X=Al, As, Ge, In, Sb, Si, Sn, Zn) prepared by mechanical alloying
Mechanical alloying with a Spex 8000 mixer/mill was used to prepare several alloys of the Fe3X composition, where the solutes X were from groups IIB, IIIB, IVB, and VB of the periodic table. Using x-ray diffractometry and Mössbauer spectrometry, we determined the steady-state phases after milling for long times. The tendencies of the alloys to form the bcc phase after milling are predicted well with the modified usage of a Darken–Gurry plot of electronegativity versus metallic radius. Thermal stabilities of some of these phases were studied. In the cases of Fe3Ge and Fe3Sn, there was the formation of transient D03 and B2 order during annealing, although this ordered structure was replaced by equilibrium phases upon further annealing
Elastic electron scattering by ethyl vinyl ether
We report measured and calculated results for elastic scattering of low-energy electrons by ethyl vinyl ether (ethoxyethene), a prototype system for studying indirect dissociative attachment processes that may play a role in DNA damage. The integral cross section displays the expected π* shape resonance. The agreement between the calculated and measured cross sections is generally good
Engineering the Kondo and Fano effects in double quantum dots
We demonstrate delicate control over the Kondo effect and its interplay with
quantum interference in an Aharonov-Bohm interferometer containing one Kondo
dot and one noninteracting dot. It is shown that the Kondo resonance undergoes
a dramatic evolution as the interdot tunnel coupling progressively increases. A
novel triple Kondo splitting occurs from the interference between constant and
Lorentzian conduction bands that cooperate in forming the Kondo singlet. The
device also manifests a highly controllable Fano-Kondo effect in coherent
electronic transport, and can be tuned to a regime where the coupled dots
behave as decoupled dots.Comment: 5 pages, 4 figure
Fluxon analogues and dark solitons in linearly coupled Bose-Einstein condensates
Two effectively one-dimensional parallel coupled Bose-Einstein condensates in
the presence of external potentials are studied. The system is modelled by
linearly coupled Gross-Pitaevskii equations. In particular, grey-soliton-like
solutions representing analogues of superconducting Josephson fluxons as well
as coupled dark solitons are discussed. Theoretical approximations based on
variational formulations are derived. It is found that the presence of a
magnetic trap can destabilize the fluxon analogues. However, stabilization is
possible by controlling the effective linear coupling between the condensates.Comment: 14 pages, 7 figures, The paper is to appear in Journal of Physics
The 2MASS Tully-Fisher Survey : Mapping the Mass in the Universe
The 2MASS Tully-Fisher Survey (2MTF) aims to measure Tully-Fisher (TF)
distances for all bright inclined spirals in the 2MASS Redshift Survey (2MRS)
using high quality HI widths and 2MASS photometry. Compared with previous
peculiar velocity surveys, the 2MTF survey provides more accurate width
measurements and more uniform sky coverage, combining observations with the
Green Bank, Arecibo and Parkes telescopes. With this new redshift-independent
distance database, we will significantly improve our understanding of the mass
distribution in the local universe.Comment: 4 pages, 3 figures, IAU Symposium 289 proceedin
- …